DYNAMIC DEFORMATION OF A THERMOVISCOELASTIC ROD OF TRIANGULAR CROSS SECTION IN A COUPLED FORMULATION

A. D. Chernyshev

UDC 539

Abstract

For the coupled model of a thermoviscoelastic rod of equilateral triangular cross section, two exact solutions are obtained for the cases where a normal displacement and a shear stress or a tangential displacement and a normal stress are specified on the lateral surface of the rod. A dimensionless parameter R_{0} is introduced to judge the appropriateness of taking into account the coupling in the formulation of the problem. Formulas are given for the velocities and lengths of the temperature, shear, and longitudinal waves, which can be used in experiments to determine the physical properties of thermoviscoelastic materials.

Key words: dynamic deformation, coupled thermoviscoelasticity problems, rod.

The properties of a thermoelastic body in a dynamic mode was the subject of research in [1-4] and other papers. The thermoviscoelastic model is a complex model, and dynamic problems have therefore been little studied. The exact solutions of dynamic problems for a two-dimensional thermoviscoelastic body are unknown.

1. Formulation of the Problem. unlike in the majority of linear models, in the thermoviscoelastic model, the mechanical properties of solids are most fully taken into account. Thermoviscoelastic properties are inherent in metals and their alloys under small variable mechanical and thermal loads [5]. Materials with such complex properties are described by various rheological models. For definiteness, we chose a model in which the elastic and viscous strain and strain rate tensors coincide and the total strains are the sum of the elastic and temperature strains. The stress tensor $\sigma_{i j}$ is expressed in terms of the strain tensors $e_{i j}$, strain rates $\varepsilon_{i j}$, and temperature T as follows:

$$
\begin{equation*}
\sigma_{i j}=\lambda\left(e_{k k}-3 \alpha_{t} T\right) \delta_{i j}+2 \mu\left(e_{i j}-\alpha_{t} T \delta_{i j}\right)+\zeta\left(\varepsilon_{k k}-3 \alpha_{t} T_{t}\right) \delta_{i j}+2 \eta\left(\varepsilon_{i j}-\alpha_{t} T_{t} \delta_{i j}\right) . \tag{1.1}
\end{equation*}
$$

Here λ and μ are the Lamé elastic coefficients, ζ and η are the viscosity coefficients, α_{t} is the thermal-expansion coefficient, $\delta_{i j}$ is the unit Kronecker tensor, and $(\cdot)_{t}=\partial(\cdot) / \partial t$.

Below, we consider dynamic problems under plane strain conditions. Substituting $\sigma_{i j}$ from (1.1) into the equations of motion for a continuum, we obtain the following two differential equations for the displacements u and v in Cartesian coordinates:

$$
\begin{gather*}
\lambda_{0} u_{x x}+(\lambda+\mu) v_{x y}+\mu u_{y y}+\zeta_{0} u_{t x x}+(\zeta+\eta) v_{t x y}+\eta u_{t y y}-\gamma_{e} T_{x}-\gamma_{v} T_{x t}=\rho u_{t t}, \\
\lambda_{0}=\lambda+2 \mu, \quad \zeta_{0}=\zeta+2 \eta, \tag{1.2}\\
\lambda_{0} v_{y y}+(\lambda+\mu) u_{x y}+\mu v_{x x}+\zeta_{0} v_{t y y}+(\zeta+\eta) u_{t x y}+\eta v_{t x x}-\gamma_{e} T_{y}-\gamma_{v} T_{y t}=\rho v_{t t}, \\
\gamma_{e}=(3 \lambda+2 \mu) \alpha_{t}, \quad \gamma_{v}=(3 \zeta+2 \eta) \alpha_{t} .
\end{gather*}
$$

These equations should be supplemented by the heat-conduction equation

$$
\begin{equation*}
b \Delta T-k\left(u_{x t}+v_{y t}\right)=T_{t}, \quad k=\gamma_{e} T_{0} /(C \rho) . \tag{1.3}
\end{equation*}
$$

Voronezh State Technological Academy, Voronezh 394000; chernyshovad@mail.ru. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 48, No. 4, pp. 128-143, July-August, 2007. Original article submitted June 26, 2006.

In (1.2) and (1.3), T_{0} is the initial temperature, Δ is the Laplacian, ρ is the density, $(\cdot)_{x}=\partial(\cdot) / \partial x,(\cdot)_{y}=$ $\partial(\cdot) / \partial y, b$ is the thermal diffusivity, C is the specific heat, and k is the coupling coefficient (the term containing this quantity takes into account the temperature variation in the solid due to adiabatic volume variation [6]). For Eqs. (1.2) and (1.3), we specify two versions of conditions on the boundary Γ of the rod with an equilateral triangular cross section of height $2 h$:

$$
\begin{gather*}
\left.u_{n}\right|_{\Gamma}=u_{10} \cos \omega t+u_{20} \sin \omega t,\left.\quad \tau_{n}\right|_{\Gamma}=\tau_{10} \cos \omega t+\tau_{20} \sin \omega t \\
\left.\frac{\partial T}{\partial n}\right|_{\Gamma}=q_{10} \cos \omega t+q_{20} \sin \omega t \tag{1.4}\\
\left.u_{\tau}\right|_{\Gamma}=v_{10} \cos \omega t+v_{20} \sin \omega t,\left.\quad \sigma_{n}\right|_{\Gamma}=\sigma_{10} \cos \omega t+\sigma_{20} \sin \omega t \\
\left.T\right|_{\Gamma}=T_{10} \cos \omega t+T_{20} \sin \omega t \tag{1.5}
\end{gather*}
$$

Here u_{n} and u_{τ} are the normal displacement and the displacement tangential to the boundary Γ of the material points, τ_{n} and σ_{n} are the shear and normal stresses on the boundary of the rod, $u_{j 0}, \tau_{j 0}, v_{j 0}, \sigma_{j 0}$, and $T_{j 0}$ $(j=1,2)$ are specified constants. Equations (1.1)-(1.5) constitute a linear problem. The material being deformed is heated with time due to energy dissipation, which can be taken into account by the nonlinear term $\sigma_{i j}^{v} \varepsilon_{i j}^{v}$ in the heat-conduction equation. For large values of t, the heating becomes substantial; therefore, the proposed linear model, which ignores dissipation, is suitable only for initial times.

We consider the problem of harmonic oscillations without initial conditions. The solution of this problem is sought in the form

$$
\begin{gather*}
u=U_{1}(x, y) \cos \omega t+U_{2}(x, y) \sin \omega t, \quad v=V_{1}(x, y) \cos \omega t+V_{2}(x, y) \sin \omega t \\
T=T_{1}(x, y) \cos \omega t+T_{2}(x, y) \sin \omega t \tag{1.6}
\end{gather*}
$$

where U_{j}, V_{j}, and T_{j} are the amplitudes of the displacement and temperature oscillations in the region Ω. Substitution of (1.6) into (1.2) and (1.3) yields the system

$$
\begin{align*}
& \lambda_{0} U_{1 x x}+(\lambda+\mu) V_{1 x y}+\mu U_{1 y y}+\omega \zeta_{0} U_{2 x x}+\omega(\zeta+\eta) V_{2 x y}+\omega \eta U_{2 y y}-\gamma_{e} T_{1 x}-\omega \gamma_{v} T_{2 x}+\rho \omega^{2} U_{1}=0 \\
& \lambda_{0} U_{2 x x}+(\lambda+\mu) V_{2 x y}+\mu U_{2 y y}-\omega \zeta_{0} U_{1 x x}-\omega(\zeta+\eta) V_{1 x y}-\omega \eta U_{1 y y}-\gamma_{e} T_{2 x}+\omega \gamma_{v} T_{1 x}+\rho \omega^{2} U_{2}=0 \tag{1.7}\\
& \lambda_{0} V_{1 y y}+(\lambda+\mu) U_{1 x y}+\mu V_{1 x x}+\omega \zeta_{0} V_{2 y y}+\omega(\zeta+\eta) U_{2 x y}+\omega \eta V_{2 x x}-\gamma_{e} T_{1 y}-\omega \gamma_{v} T_{2 y}+\rho \omega^{2} V_{1}=0 \\
& \lambda_{0} V_{2 y y}+(\lambda+\mu) U_{2 x y}+\mu V_{2 x x}-\omega \zeta_{0} V_{1 y y}-\omega(\zeta+\eta) U_{1 x y}-\omega \eta V_{1 x x}-\gamma_{e} T_{2 y}+\omega \gamma_{v} T_{1 y}+\rho \omega^{2} V_{2}=0 \tag{1.8}\\
& \quad b \Delta T_{1}-\omega k\left(U_{2 x}+V_{2 y}\right)-\omega T_{2}=0, \quad b \Delta T_{2}+\omega k\left(U_{1 x}+V_{1 y}\right)+\omega T_{1}=0 \tag{1.9}
\end{align*}
$$

2. Solution for a Flat Strip. In this case, we assume that the quantities U_{j}, V_{j} and $T_{j}(j=1,2)$ depend only on the coordinate x. We introduce the following notation:

$$
U_{j}=P_{j}(x), \quad V_{j}=Q_{j}(x), \quad T_{j}=R_{j}(x) \quad(j=1,2)
$$

Equations (1.7)-(1.9) are simplified:

$$
\begin{gather*}
\lambda_{0} P_{1}^{\prime \prime}+\omega \zeta_{0} P_{2}^{\prime \prime}-\gamma_{e} R_{1}^{\prime}-\omega \gamma_{v} R_{2}^{\prime}+\rho \omega^{2} P_{1}=0, \quad \lambda_{0} P_{2}^{\prime \prime}-\omega \zeta_{0} P_{1}^{\prime \prime}-\gamma_{e} R_{2}^{\prime}+\omega \gamma_{v} R_{1}^{\prime}+\rho \omega^{2} P_{2}=0 \tag{2.1}\\
b R_{1}^{\prime \prime}-\omega k P_{2}^{\prime}-\omega R_{2}=0, \quad b R_{2}^{\prime \prime}+\omega k P_{1}^{\prime}+\omega R_{1}=0 \\
\mu Q_{1}^{\prime \prime}+\omega \eta Q_{2}^{\prime \prime}+\rho \omega^{2} Q_{1}=0, \quad \mu Q_{2}^{\prime \prime}-\omega \eta Q_{1}^{\prime \prime}+\rho \omega^{2} Q_{2}=0 \tag{2.2}
\end{gather*}
$$

Here the unknown functions P_{j} and R_{j} enter system (2.1) because of the coupling nature of the model, and for Q_{j} we have separate independent equations (2.2). Particular solutions of system (2.1), (2.2) are sought in the form

$$
\begin{equation*}
P_{j}=A_{j} \mathrm{e}^{\alpha x}, \quad Q_{j}=B_{j} \mathrm{e}^{\beta x}, \quad R_{j}=C_{j} \mathrm{e}^{\alpha x} \quad(j=1,2) \tag{2.3}
\end{equation*}
$$

Substitution of (2.3) into (2.1) and (2.2) yields the following system of equations for A_{j}, B_{j}, C_{j}, α, and β :

$$
\begin{gather*}
\lambda_{0} \alpha^{2} A_{1}+\omega \zeta_{0} \alpha^{2} A_{2}-\gamma_{e} \alpha C_{1}-\omega \gamma_{v} \alpha C_{2}+\rho \omega^{2} A_{1}=0 \\
\lambda_{0} \alpha^{2} A_{2}-\omega \zeta_{0} \alpha^{2} A_{1}-\gamma_{e} \alpha C_{2}+\omega \gamma_{v} \alpha C_{1}+\rho \omega^{2} A_{2}=0 \tag{2.4}\\
b \alpha^{2} C_{1}-\omega k \alpha A_{2}-\omega C_{2}=0, \quad b \alpha^{2} C_{2}+\omega k \alpha A_{1}+\omega C_{1}=0 \\
\mu \beta^{2} B_{1}+\omega \eta \beta^{2} B_{2}+\rho \omega^{2} B_{1}=0, \quad \mu \beta^{2} B_{2}-\omega \eta \beta^{2} B_{1}+\rho \omega^{2} B_{2}=0 . \tag{2.5}
\end{gather*}
$$

We first consider the simpler system (2.5). Equating its determinant to zero, we find four complex roots of the characteristic equation:

$$
\begin{gather*}
\beta_{1,2}= \pm\left(\alpha_{00}-i \beta_{00}\right), \quad \beta_{3,4}= \pm\left(\alpha_{00}+i \beta_{00}\right), \quad \beta_{1,2}=\bar{\beta}_{3,4}, \\
\alpha_{00}=\omega \sqrt{\frac{\rho}{2 \mu}} \frac{\sqrt{G_{\eta}-1}}{G_{\eta}}, \quad \beta_{00}=\omega \sqrt{\frac{\rho}{2 \mu}} \frac{\sqrt{G_{\eta}+1}}{G_{\eta}}, \quad G_{\eta}=\sqrt{1+\left(\frac{\omega \eta}{\mu}\right)^{2}} . \tag{2.6}
\end{gather*}
$$

Here the bar above denotes coupling. To obtain the general solution of system (2.5) in explicit form, it is necessary to determine the coupling between the coefficients B_{1} and B_{2} for various values of $\beta=\beta_{m}(m=1, \ldots, 4)$. We introduce the following notation:

$$
B_{1}\left(\beta_{m}\right)=B_{1 m}, \quad B_{2}\left(\beta_{m}\right)=B_{2 m} \quad(m=1, \ldots, 4)
$$

The coefficients $B_{2 m}$ can be expressed in terms of the coefficients $B_{1 m}$, which will be treated as complex constants. Substituting $\beta=\beta_{m}(m=1, \ldots, 4)$ into (2.5), we find the desired couplings:

$$
\begin{equation*}
B_{2 j}=-i B_{1 j}, \quad B_{2(j+2)}=i B_{1(j+2)}, \quad j=1,2 \tag{2.7}
\end{equation*}
$$

The general solution of system (2.2) becomes

$$
\begin{equation*}
Q_{1}(x)=\sum_{m=1}^{4} B_{1 m} \mathrm{e}^{\beta_{m} x}, \quad Q_{2}(x)=i \sum_{m=1}^{2}\left(B_{1(m+2)} \mathrm{e}^{\beta_{m+2} x}-B_{1 m} \mathrm{e}^{\beta_{m} x}\right) \tag{2.8}
\end{equation*}
$$

The right sides of equalities (2.8) contain complex quantities, whereas $Q_{1}(x)$ and $Q_{2}(x)$ are real functions of the real variable x. Therefore, these equations need to be reduced to a form that does not contain imaginary terms. For this, we associate each complex conjugate pair of characteristic roots β_{m} and $\beta_{m+2}=\bar{\beta}_{m}$ in (2.6) with a pair of complex conjugate coefficients:

$$
\begin{equation*}
B_{11}=\frac{D_{1}+i D_{2}}{2}, \quad B_{13}=\frac{D_{1}-i D_{2}}{2}, \quad B_{12}=\frac{D_{3}-i D_{4}}{2}, \quad B_{14}=\frac{D_{3}+i D_{4}}{2} \tag{2.9}
\end{equation*}
$$

Formulas (2.7) and (2.9) allow one to establish the following property: the sum of two terms in expressions (2.8) that correspond to two complex conjugate characteristic roots β_{m} and $\beta_{m+2}=\bar{\beta}_{m}(m=1,2)$ is a real function. We show this using the expression for $Q_{1}(x)$ as an example:

$$
\begin{gather*}
B_{11} \mathrm{e}^{\beta_{1} x}+B_{13} \mathrm{e}^{\beta_{3} x}=\left(D_{1}+i D_{2}\right)\left(\cos \beta_{00} x-i \sin \beta_{00} x\right) \mathrm{e}^{\alpha_{00} x} / 2 \\
+\left(D_{1}-i D_{2}\right)\left(\cos \beta_{00} x+i \sin \beta_{00} x\right) \mathrm{e}^{\alpha_{00} x} / 2=\left(D_{1} \cos \beta_{00} x+D_{2} \sin \beta_{00} x\right) \mathrm{e}^{\alpha_{00} x} \tag{2.10}
\end{gather*}
$$

In view of the property (2.10), the general solution (2.8) for a flat strip can be written in real form. If the variable x is replaced by the difference $x-h$ (which is reasonable for subsequent calculations), the expressions for $Q_{1}(x)$ and $Q_{2}(x)$ become

$$
\begin{align*}
& Q_{1}(x)=\left[D_{1} \cos \beta_{00}(x-h)+D_{2} \sin \beta_{00}(x-h)\right] \mathrm{e}^{\alpha_{00}(x-h)}+\left[D_{3} \cos \beta_{00}(x-h)+D_{4} \sin \beta_{00}(x-h)\right] \mathrm{e}^{\alpha_{00}(h-x)} \\
& Q_{2}(x)=\left[D_{2} \cos \beta_{00}(x-h)-D_{1} \sin \beta_{00}(x-h)\right] \mathrm{e}^{\alpha_{00}(x-h)}-\left[D_{4} \cos \beta_{00}(x-h)-D_{3} \sin \beta_{00}(x-h)\right] \mathrm{e}^{\alpha_{00}(h-x)} \tag{2.11}
\end{align*}
$$

We now proceed to the solution of system (2.4). In finding the characteristic roots in explicit form from the determinant of this system, we obtain an algebraic equation of the eighth order, which should be written in compact form. For this, we find A_{1} and A_{2} from the second and third equalities of system (2.4):

$$
\begin{equation*}
\omega k \alpha A_{1}=-\omega C_{1}-b \alpha^{2} C_{2}, \quad \omega k \alpha A_{2}=b \alpha^{2} C_{1}-\omega C_{2} \tag{2.12}
\end{equation*}
$$

Eliminating A_{1} and A_{2} from system (2.4) by using (2.12), we obtain two equations of the fourth order for α :

$$
\begin{equation*}
b \lambda_{0} \alpha^{4}+\left(b \rho+\zeta_{0}+k \gamma_{v}\right) \omega^{2} \alpha^{2}= \pm i \omega\left[-\zeta_{0} b \alpha^{4}+\left(\lambda_{0}+k \gamma_{e}\right) \alpha^{2}+\rho \omega^{2}\right] . \tag{2.13}
\end{equation*}
$$

From this, we find eight characteristic roots. We introduce the dimensionless parameters

$$
N_{0}=\frac{b \rho \omega}{\lambda_{0}}, \quad M_{e}=\frac{k \gamma_{e}}{\lambda_{0}}=\frac{(3 \lambda+2 \mu)^{2} \alpha_{t}^{2} T_{0}}{C \rho(\lambda+2 \mu)}, \quad M_{v}=\frac{k \gamma_{v}}{b \rho}, \quad M_{\zeta}=\frac{\zeta_{0}}{b \rho}
$$

and notation

$$
\begin{gathered}
A_{*}=N_{0}^{2}\left(1+M_{\zeta}+M_{v}\right)^{2}-\left(1+M_{e}\right)^{2}-4 N_{0}^{2} M_{\zeta}, \quad B_{*}=2 N_{0}\left[1-M_{e}-\left(1+M_{e}\right)\left(M_{\zeta}+M_{v}\right)\right] \\
K_{0}=\frac{1}{\sqrt{2}} \sqrt{\sqrt{A_{*}^{2}+B_{*}^{2}}+A_{*}}, \quad L_{0}=\frac{1}{\sqrt{2}} \sqrt{\sqrt{A_{*}^{2}+B_{*}^{2}}-A_{*}}
\end{gathered}
$$

If a given material with weak coupling obeys the inequality

$$
\begin{equation*}
M_{e}+\left(1+M_{e}\right)\left(M_{\zeta}+M_{v}\right)=R_{0}<1 \tag{2.14}
\end{equation*}
$$

the roots of Eq. (2.13) with the plus sign in can be written as

$$
\begin{equation*}
\alpha_{k}^{2}=\frac{i\left(1+M_{e}\right)-N_{0}\left(1+M_{\zeta}+M_{v}\right) \pm\left(K_{0}+i L_{0}\right)}{1+i N_{0} M_{\zeta}} \frac{\omega}{2 b}, \quad k=1, \ldots, 4 \tag{2.15}
\end{equation*}
$$

and the roots of Eq. (2.13) with the minus sign can be written as

$$
\begin{equation*}
\alpha_{k}^{2}=\frac{-i\left(1+M_{e}\right)-N_{0}\left(1+M_{\zeta}+M_{v}\right) \pm\left(K_{0}-i L_{0}\right)}{1-i N_{0} M_{\zeta}} \frac{\omega}{2 b}, \quad k=5, \ldots, 8 \tag{2.16}
\end{equation*}
$$

In the case $R_{0}>1$, where the coupling is substantial, the roots of Eq. (2.13) with the plus sign are written as

$$
\begin{equation*}
\alpha_{k}^{2}=\frac{i\left(1+M_{e}\right)-N_{0}\left(1+M_{\zeta}+M_{v}\right) \pm\left(K_{0}-i L_{0}\right)}{1+i N_{0} M_{\zeta}} \frac{\omega}{2 b}, \quad k=1, \ldots, 4 \tag{2.17}
\end{equation*}
$$

and the roots of the Eq. (2.13) with the minus sign are written as

$$
\begin{equation*}
\alpha_{k}^{2}=\frac{-i\left(1+M_{e}\right)-N_{0}\left(1+M_{\zeta}+M_{v}\right) \pm\left(K_{0}+i L_{0}\right)}{1-i N_{0} M_{\zeta}} \frac{\omega}{2 b}, \quad k=5, \ldots, 8 \tag{2.18}
\end{equation*}
$$

Next, it is expedient to represent the roots $\alpha_{1}, \ldots, \alpha_{8}$ as follows:

$$
\begin{equation*}
\alpha_{1,2}= \pm\left(\alpha_{01}+i \beta_{01}\right), \quad \alpha_{3,4}= \pm\left(\alpha_{03}+i \beta_{03}\right), \quad \alpha_{5,6}=\bar{\alpha}_{1,2}, \quad \alpha_{7,8}=\bar{\alpha}_{3,4} \tag{2.19}
\end{equation*}
$$

The real and imaginary parts of the roots are found from (2.15)-(2.18) using the formulas

$$
\begin{gathered}
R_{0}<1: \quad \alpha_{01}=R_{1}^{*} \cos \varphi_{1}, \quad \beta_{01}=R_{1}^{*} \sin \varphi_{1}, \\
\varphi_{1}=\frac{1}{2} \arctan \frac{B_{1}^{*}}{A_{1}^{*}}, \quad R_{1}^{*}=\sqrt{\omega \sqrt{A_{1}^{* 2}+B_{1}^{* 2}} /\left[2 b\left(1+N_{0}^{2} M_{\zeta}^{2}\right)\right]} \\
A_{1}^{*}=K_{0}-N_{0}\left(1+M_{\zeta}+M_{v}\right)+N_{0} M_{\zeta}\left(1+M_{e}+L_{0}\right), \\
B_{1}^{*}=1+M_{e}+L_{0}+N_{0} M_{\zeta}\left[N_{0}\left(1+M_{\zeta}+M_{v}\right)-K_{0}\right], \\
R_{0}<1: \quad \alpha_{03}=R_{3}^{*} \cos \varphi_{3}, \quad \beta_{03}=R_{3}^{*} \sin \varphi_{3}, \\
\varphi_{3}=\frac{1}{2} \arctan \frac{B_{3}^{*}}{A_{3}^{*}}, \quad R_{3}^{*}=\sqrt{\omega \sqrt{A_{3}^{* 2}+B_{3}^{* 2}} /\left[2 b\left(1+N_{0}^{2} M_{\zeta}^{2}\right)\right]} \\
A_{3}^{*}=-K_{0}-N_{0}\left(1+M_{\zeta}+M_{v}\right)+N_{0} M_{\zeta}\left(1+M_{e}-L_{0}\right) \\
B_{3}^{*}=1+M_{e}-L_{0}+N_{0} M_{\zeta}\left[N_{0}\left(1+M_{\zeta}+M_{v}\right)-K_{0}\right], \\
R_{0}>1: \quad \alpha_{01}=R_{1}^{*} \cos \varphi_{1}, \quad \beta_{01}=R_{1}^{*} \sin \varphi_{1},
\end{gathered}
$$

$$
\begin{gathered}
\varphi_{1}=\frac{1}{2} \arctan \frac{B_{1}^{*}}{A_{1}^{*}}, \quad R_{1}^{*}=\sqrt{\omega \sqrt{A_{1}^{* 2}+B_{1}^{* 2}} /\left[2 b\left(1+N_{0}^{2} M_{\zeta}^{2}\right)\right]}, \\
A_{1}^{*}=K_{0}-N_{0}\left(1+M_{\zeta}+M_{v}\right)+N_{0} M_{\zeta}\left(1+M_{e}-L_{0}\right), \\
B_{1}^{*}=1+M_{e}-L_{0}+N_{0} M_{\zeta}\left[N_{0}\left(1+M_{\zeta}+M_{v}\right)-K_{0}\right], \\
R_{0}>1: \quad \alpha_{03}=R_{3}^{*} \cos \varphi_{3}, \quad \beta_{03}=R_{3}^{*} \sin \varphi_{3}, \\
\varphi_{3}=\frac{1}{2} \arctan \frac{B_{3}^{*}}{A_{3}^{*}}, \quad R_{3}^{*}=\sqrt{\omega \sqrt{A_{3}^{* 2}+B_{3}^{* 2}} /\left[2 b\left(1+N_{0}^{2} M_{\zeta}^{2}\right)\right]}, \\
A_{3}^{*}=-K_{0}-N_{0}\left(1+M_{\zeta}+M_{v}\right)+N_{0} M_{\zeta}\left(1+M_{e}+L_{0}\right), \\
B_{3}^{*}=1+M_{e}+L_{0}+N_{0} M_{\zeta}\left[N_{0}\left(1+M_{\zeta}+M_{v}\right)-K_{0}\right] .
\end{gathered}
$$

To obtain the general solution of system (2.1) in explicit form, it is necessary to refine the couplings between the coefficients A_{j} and $C_{j}(j=1,2)$ for various values of $\alpha=\alpha_{m}(m=1, \ldots, 8)$. For this purpose, we introduce the following notation:

$$
A_{j}=A_{j}\left(\alpha_{m}\right), \quad C_{j}=C_{j}\left(\alpha_{m}\right) \quad(j=1,2, m=1, \ldots, 8), \quad C_{1}\left(\alpha_{m}\right)=H_{m}
$$

We express the coefficients $C_{2}\left(\alpha_{m}\right)$ and $A_{j}\left(\alpha_{m}\right)$ in terms of the quantities H_{m}, which will be considered complex. Substitution of $\alpha=\alpha_{m}$ into (2.4) and (2.12) yields

$$
\begin{gathered}
C_{2}\left(\alpha_{m}\right)=i C_{1}\left(\alpha_{m}\right)=i H_{m}, \quad C_{2}\left(\alpha_{m+4}\right)=-i C_{1}\left(\alpha_{m+4}\right)=-i H_{m+4} \\
A_{1}\left(\alpha_{m}\right)=-\left(i \frac{b \alpha_{m}}{\omega}+\frac{\bar{\alpha}_{m}}{\left|\alpha_{m}\right|^{2}}\right) \frac{H_{m}}{k}, \quad A_{1}\left(\alpha_{m+4}\right)=\left(i \frac{b \alpha_{m+4}}{\omega}-\frac{\bar{\alpha}_{m+4}}{\left|\alpha_{m+4}\right|^{2}}\right) \frac{H_{m+4}}{k}, \\
A_{2}\left(\alpha_{m}\right)=i A_{1}\left(\alpha_{m}\right), \quad A_{2}\left(\alpha_{m+4}\right)=-i A_{1}\left(\alpha_{m+4}\right) \quad(m=1, \ldots, 4) .
\end{gathered}
$$

As a result, the general solution of system (2.1) becomes

$$
\begin{gather*}
P_{1}(x)=-\sum_{m=1}^{4}\left(i \frac{b \alpha_{m}}{\omega}+\frac{\bar{\alpha}_{m}}{\left|\alpha_{m}\right|^{2}}\right) \frac{H_{m}}{k} \mathrm{e}^{\alpha_{m} x}+\sum_{m=5}^{8}\left(i \frac{b \alpha_{m}}{\omega}-\frac{\bar{\alpha}_{m}}{\left|\alpha_{m}\right|^{2}}\right) \frac{H_{m}}{k} \mathrm{e}^{\alpha_{m} x}, \\
P_{2}(x)=\sum_{m=1}^{4}\left(\frac{b \alpha_{m}}{\omega}-i \frac{\bar{\alpha}_{m}}{\left|\alpha_{m}\right|^{2}}\right) \frac{H_{m}}{k} \mathrm{e}^{\alpha_{m} x}+\sum_{m=5}^{8}\left(\frac{b \alpha_{m}}{\omega}+i \frac{\bar{\alpha}_{m}}{\left|\alpha_{m}\right|^{2}}\right) \frac{H_{m}}{k} \mathrm{e}^{\alpha_{m} x}, \tag{2.20}\\
R_{1}(x)=\sum_{m=1}^{8} H_{m} \mathrm{e}^{\alpha_{m} x}, \quad R_{2}(x)=i \sum_{m=1}^{4} H_{m} \mathrm{e}^{\alpha_{m} x}-i \sum_{m=5}^{8} H_{m} \mathrm{e}^{\alpha_{m} x} .
\end{gather*}
$$

For the four pairs of complex-conjugate characteristic roots (2.19), we introduce the corresponding pairs of complexconjugate coefficients:

$$
H_{m}=\left(A_{0 m}-i C_{0 m}\right) / 2, \quad H_{m+4}=\bar{H}_{m}=\left(A_{0 m}+i C_{0 m}\right) / 2, \quad m=1, \ldots, 4 .
$$

Here $A_{0 m}$ and $C_{0 m}(m=1, \ldots, 4)$ are eight unknowns, which are then found from boundary conditions (1.4) or (1.5). In (2.10), it is shown that the sum of two terms in expressions (2.20) that correspond to the two complexconjugate characteristic roots α_{m} and $\alpha_{m+4}(m=1, \ldots, 4)$, is a real function. For a more compact form of the subsequent expressions, we introduce the auxiliary constants p_{j} and q_{j} and the notation of the real and imaginary parts of the characteristic roots with even subscripts:

$$
\begin{align*}
p_{j}=\frac{1}{k}\left(\frac{\beta_{0 j}}{R_{j}^{* 2}}-\frac{b \alpha_{0 j}}{\omega}\right), \quad q_{j}=\frac{1}{k}\left(\frac{\alpha_{0 j}}{R_{j}^{* 2}}-\frac{b \beta_{0 j}}{\omega}\right), \quad j=1,3, \tag{2.21}\\
p_{2 k}=p_{2 k-1}, \quad q_{2 k}=q_{2 k-1}, \quad \alpha_{0(2 k)}=\alpha_{0(2 k-1)}, \quad \beta_{0(2 k)}=\beta_{0(2 k-1)}, \quad k=1,2 .
\end{align*}
$$

With the use of the property (2.10) and the notation (2.21), the general solution in (2.20) for a flat strip is reduced to real form. If the variable x in (2.20) is replaced by the difference $x-h$ (which proves more convenient for making the solution to satisfy the boundary conditions), the expressions for $P_{j}(x)$ and $R_{j}(x)$ become

$$
\begin{align*}
& R_{1}(x)=\sum_{k=1}^{4}\left[A_{0 k} \cos \beta_{0 k}(x-h)-(-1)^{k} C_{0 k} \sin \beta_{0 k}(x-h)\right] \mathrm{e}^{(-1)^{k} \alpha_{0 k}(h-x)}, \\
& R_{2}(x)=\sum_{k=1}^{4}\left[C_{0 k} \cos \beta_{0 k}(x-h)+(-1)^{k} A_{0 k} \sin \beta_{0 k}(x-h)\right] \mathrm{e}^{(-1)^{k} \alpha_{0 k}(h-x)}, \\
& \quad P_{1}(x)=\sum_{k=1}^{4}\left\{q_{k}\left[(-1)^{k} A_{0 k} \cos \beta_{0 k}(x-h)-C_{0 k} \sin \beta_{0 k}(x-h)\right]\right. \tag{2.22}\\
& \left.-p_{k}\left[(-1)^{k} C_{0 k} \cos \beta_{0 k}(x-h)+A_{0 k} \sin \beta_{0 k}(x-h)\right]\right\} \mathrm{e}^{(-1)^{k} \alpha_{0 k}(h-x)}, \\
& \quad P_{2}(x)=\sum_{k=1}^{4}\left\{p_{k}\left[(-1)^{k} A_{0 k} \cos \beta_{0 k}(x-h)-C_{0 k} \sin \beta_{0 k}(x-h)\right]\right. \\
& \left.+q_{k}\left[(-1)^{k} C_{0 k} \cos \beta_{0 k}(x-h)+A_{0 k} \sin \beta_{0 k}(x-h)\right]\right\} \mathrm{e}^{(-1)^{k} \alpha_{0 k}(h-x)}
\end{align*}
$$

The general integrals for a thermoviscoelastic strip (2.11), (2.22) contain 12 arbitrary constants $A_{0 j}, C_{0 j}$, and $D_{j}(j=1, \ldots, 4)$ which are found from the conditions on the boundaries of the flat strip. The functions obtained will be used to construct two exact solutions for a rod of triangular cross section.
3. First Exact Solution. To construct the solution, we use a special procedure based on the variables ξ [7], which are determined as follows. We denote the radius-vectors of a certain pole and an arbitrary point in the section of the $\operatorname{rod} \Omega$ by \boldsymbol{r}_{0} and \boldsymbol{r} and the radius-vectors of the vertices of the equilateral triangle Ω of height $2 h$ by \boldsymbol{r}_{m} and introduce the auxiliary variables ξ and ξ_{k} :

$$
\begin{equation*}
\xi=\left(\boldsymbol{r}-\boldsymbol{r}_{0}\right) \boldsymbol{n}, \quad \xi_{m}=\left(\boldsymbol{r}-\boldsymbol{r}_{m}\right) \boldsymbol{n}_{m}, \quad m=1,2,3 \tag{3.1}
\end{equation*}
$$

(\boldsymbol{n} is a certain unit vector, \boldsymbol{n}_{k} are the inward unit normals to the sides of the triangle Ω, whose vertices and sides are numbered counter-clockwise). With this definition of the variables ξ_{m}, the equations of the sides of the triangle are given by the equalities $\xi_{1}=0, \xi_{2}=0$, and $\xi_{3}=0$. For the points $(x, y) \in \Omega$, the strict inequalities $\xi_{1}>0$, $\xi_{2}>0$, and $\xi_{3}>0$ hold. The variables ξ and ξ_{m} and the normals \boldsymbol{n}_{m} on the plane (x, y) possess the following properties, which will be used in the subsequent analysis:

$$
\begin{gather*}
\boldsymbol{n}_{1}+\boldsymbol{n}_{2}+\boldsymbol{n}_{3}=0, \quad \boldsymbol{n}_{1} \boldsymbol{n}_{2}=\boldsymbol{n}_{1} \boldsymbol{n}_{3}=\boldsymbol{n}_{2} \boldsymbol{n}_{3}=-1 / 2, \\
\boldsymbol{n}_{1} \times \boldsymbol{n}_{2}=\boldsymbol{n}_{2} \times \boldsymbol{n}_{3}=\boldsymbol{n}_{3} \times \boldsymbol{n}_{1}=\sqrt{3} / 2, \tag{3.2}\\
F=F(\xi) \in C^{2}(\Omega): \quad F_{x}=\xi^{\prime}(\xi) n_{x}, \quad F_{y}=F^{\prime}(\xi) n_{y}, \\
F_{x x}=F^{\prime \prime}(\xi) n_{x}^{2}, \quad F_{x y}=F^{\prime \prime}(\xi) n_{x} n_{y}, \quad F_{y y}=F^{\prime \prime}(\xi) n_{y}^{2} \tag{3.3}
\end{gather*}
$$

Here $\boldsymbol{n}_{j} \times \boldsymbol{n}_{k}$ is the unique nonzero projection of the vector product onto the z axis. Using the functions $R_{j}(\xi)$, $P_{j}(\xi)$, and $Q_{j}(\xi)$ obtained by formulas (2.11) and (2.22), it is possible to construct a particular solution of system (1.7)-(1.9):

$$
\begin{gather*}
U_{j}(x, y)=P_{j}(\xi) n_{x}-Q_{j}(\xi) n_{y}, \quad V_{j}(x, y)=P_{j}(\xi) n_{y}+Q_{j}(\xi) n_{x} \\
T_{j}(x, y)=R_{j}(\xi), \quad j=1,2 \tag{3.4}
\end{gather*}
$$

The forms of the functions U_{j}, V_{j}, and T_{j} in (3.4) differ significantly. This is explained by the fact that $\left(U_{j}, V_{j}\right)$ is a vector function and T_{j} is a scalar function. Transformation from x to the variable ξ is equivalent to rotation of the coordinate system. In this case, vector functions are transformed under the laws of vector algebra and scalar functions do not change; therefore, the functions $\left(U_{j}, V_{j}\right)$ contain projections of the normal vector n_{x}
and n_{y} that take into account the rotation, and the functions T_{j} do not contain these projections in similar form. Below, the following properties will be used.

Property 1. If the functions $P_{j}(x), Q_{j}(x)$, and $R_{j}(x)$ used in expressions (3.4) are solutions of systems (2.1) and (2.2), i.e., if they have the form (2.11) and (2.22), then U_{j}, V_{j}, and T_{j} from (3.4) satisfy all differential equations of system (1.7)-(1.9).

Property 2. In (3.4), the functions $Q_{j}(\xi)$ as particular solutions of Eqs. (2.2) can be chosen independently of the particular solutions $P_{j}(\xi)$ and $R_{j}(\xi)$.

To prove Properties 1 and 2, we substitute U_{j}, V_{j}, and T_{j} from (3.4) into the first equations of (1.7) and (1.9); for the remaining equations, similar manipulations can be performed. Using the expressions for the particular derivatives from (3.3), we obtain

$$
\begin{align*}
& \lambda_{0}\left(P_{1}^{\prime \prime} n_{x}^{3}-Q_{1}^{\prime \prime} n_{x}^{2} n_{y}\right)+(\lambda+\mu)\left(P_{1}^{\prime \prime} n_{x} n_{y}^{2}+Q_{1}^{\prime \prime} n_{x}^{2} n_{y}\right)+\mu\left(P_{1}^{\prime \prime} n_{x} n_{y}^{2}-Q_{1}^{\prime \prime} n_{y}^{3}\right) \\
& +\omega \zeta_{0}\left(P_{2}^{\prime \prime} n_{x}^{3}-Q_{2}^{\prime \prime} n_{x}^{2} n_{y}\right)+\omega(\zeta+\eta)\left(P_{2}^{\prime \prime} n_{x} n_{y}^{2}+Q_{2}^{\prime \prime} n_{x}^{2} n_{y}\right) \\
& +\omega \eta\left(P_{2}^{\prime \prime} n_{x} n_{y}^{2}-Q_{2}^{\prime \prime} n_{y}^{3}\right)-\gamma_{e} R_{1}^{\prime} n_{x}-\omega \gamma_{v} R_{2}^{\prime} n_{x}+\rho \omega^{2}\left(P_{1} n_{x}-Q_{1} n_{y}\right)=0 \tag{3.5}\\
& \quad b R_{1}^{\prime \prime}-k \omega\left(P_{2}^{\prime} n_{x}^{2}-Q_{2}^{\prime} n_{x} n_{y}\right)-k \omega\left(P_{2}^{\prime} n_{y}^{2}+Q_{2}^{\prime} n_{x} n_{y}\right)-\omega R_{2}=0
\end{align*}
$$

After simplifications, the last equation in (3.5) coincides with the third equation in (2.1.) In the first equation of (3.5), we group all terms ahead of P_{j} and Q_{j} :

$$
\begin{align*}
& P_{1}^{\prime \prime} n_{x}\left(\lambda_{0} n_{x}^{2}+(\lambda+\mu) n_{y}^{2}+\mu n_{y}^{2}\right)+\omega P_{2}^{\prime \prime} n_{x}\left(\zeta_{0} n_{x}^{2}+(\zeta+\eta) n_{y}^{2}+\eta n_{y}^{2}\right) \\
& +\rho \omega^{2} n_{x} P_{1}-Q_{1}^{\prime \prime} n_{y}\left(\lambda_{0} n_{x}^{2}-(\lambda+\mu) n_{x}^{2}+\mu n_{y}^{2}\right)-\gamma_{e} R_{1}^{\prime} n_{x}-\omega \gamma_{v} R_{2}^{\prime} n_{x} \\
& \quad-\omega Q_{2}^{\prime \prime} n_{y}\left(\zeta_{0} n_{x}^{2}-(\zeta+\eta) n_{x}^{2}+\eta n_{y}^{2}\right)-\rho \omega^{2} n_{y} Q_{1}=0 \tag{3.6}
\end{align*}
$$

The coefficients at $P_{j}^{\prime \prime}$ and $Q_{j}^{\prime \prime}$ are transformed by the formulas

$$
\begin{gather*}
\lambda_{0} n_{x}^{2}+(\lambda+\mu) n_{y}^{2}+\mu n_{y}^{2}=\lambda_{0} n_{x}^{2}+\lambda_{0} n_{y}^{2}=\lambda_{0} \\
\lambda_{0} n_{x}^{2}-(\lambda+\mu) n_{x}^{2}+\mu n_{y}^{2}=\mu n_{x}^{2}+\mu n_{y}^{2}=\mu \tag{3.7}
\end{gather*}
$$

With the use of (3.7), Eq. (3.6) is reduced to the form

$$
\begin{equation*}
n_{x}\left(\lambda_{0} P_{1}^{\prime \prime}+\omega \zeta_{0} P_{2}^{\prime \prime}-\gamma_{e} R_{1}^{\prime}-\omega \gamma_{v} R_{2}^{\prime}+\rho \omega^{2} P_{1}\right)-n_{y}\left(\mu Q_{1}^{\prime \prime}+\omega \eta Q_{2}^{\prime \prime}+\rho \omega^{2} Q_{1}\right)=0 \tag{3.8}
\end{equation*}
$$

Since P_{j}, Q_{j}, and R_{j} satisfy Eqs. (2.1) and (2.2) by construction, the expressions in parentheses in (3.8) vanish. Thus, Properties 1 and 2 are proved. If on the right sides of expressions (3.4), the variable ξ is replaced by any of the variables ξ_{m} determined in (3.1) the expressions obtained for U_{j}, V_{j}, and T_{j} satisfy system (1.7)-(1.9).

In writing the exact solution, we introduce the functions

$$
P_{j}^{(a)}(\xi)=P_{j}(\xi)-P_{j}(2 h-\xi), \quad R_{j}^{(s)}(\xi)=R_{j}(\xi)+R_{j}(2 h-\xi), \quad j=1,2
$$

The functions $P_{j}^{(s)}(\xi), R_{j}^{(a)}(\xi), Q_{j}^{(s)}(\xi)$, and $Q_{j}^{(a)}(\xi)$ are introduced similarly. The superscript (s) [or (a)] indicates that the function is symmetric (or antisymmetric) about the point $\xi=h$; therefore, for these functions and their derivatives, the following equalities are satisfied:

$$
\begin{gather*}
P_{j}^{(a)}(\xi)+P_{j}^{(a)}(2 h-\xi)=0, \quad R_{j}^{(s)}(\xi)-R_{j}^{(s)}(2 h-\xi)=0, \quad j=1,2, \\
P_{j}^{(a) \prime}(\xi)-P_{j}^{(a) \prime}(2 h-\xi)=0, \quad R_{j}^{(s) \prime}(\xi)+R_{j}^{(s) \prime}(2 h-\xi)=0 . \tag{3.9}
\end{gather*}
$$

If the functions $P_{j}(\xi)$ and $R_{j}(\xi)$ jointly contain eight constants, the functions $P_{j}^{(s)}(\xi)$ and $R_{j}^{(a)}(\xi)$ contain only four constants and the functions $Q_{j}^{(a)}(\xi)$ contain two constants; we denote these constants by F_{1}, \ldots, F_{4} and G_{1} and G_{2} :

$$
\begin{gathered}
F_{1}=2\left(A_{01}+A_{02}\right), \quad F_{2}=2\left(C_{01}+C_{02}\right), \quad F_{3}=2\left(A_{03}+A_{04}\right), \quad F_{4}=2\left(C_{03}+C_{04}\right), \\
G_{1}=2\left(D_{1}+D_{3}\right), \quad G_{2}=2\left(D_{2}-D_{4}\right)
\end{gathered}
$$

Below, a particular form of the functions $P_{j}^{(a)}(\xi), Q_{j}^{(s)}(\xi)$, and $R_{j}^{(s)}(\xi)$ will be required. To obtain a compact form of these functions, we introduce the notation

$$
\begin{array}{ll}
\operatorname{coSh}_{0 j}(\xi)=\cos \beta_{0 j}(\xi-h) \sinh \alpha_{0 j}(\xi-h), & \operatorname{siCh}_{0 j}(\xi)=\sin \beta_{0 j}(\xi-h) \cosh \alpha_{0 j}(\xi-h) \\
\operatorname{coCh}_{0 j}(\xi)=\cos \beta_{0 j}(\xi-h) \cosh \alpha_{0 j}(\xi-h), & \operatorname{siSh}_{0 j}(\xi)=\sin \beta_{0 j}(\xi-h) \sinh \alpha_{0 j}(\xi-h)
\end{array}
$$

In these notation, the functions $P_{j}^{(a)}(\xi), Q_{j}^{(s)}(\xi)$, and $R_{j}^{(s)}(\xi)$ are written as

$$
\begin{gather*}
P_{1}^{(a)}(\xi)=\sum_{k=1}^{2}\left\{p_{2 k-1}\left[F_{2 k} \operatorname{coSh}_{0(2 k-1)}(\xi)-F_{2 k-1} \operatorname{siCh}_{0(2 k-1)}(\xi)\right]\right. \\
\left.-q_{2 k-1}\left[F_{2 k-1} \operatorname{coSh}_{0(2 k-1)}(\xi)+F_{2 k} \operatorname{siCh}_{0(2 k-1)}(\xi)\right]\right\} \\
P_{2}^{(a)}(\xi)=-\sum_{k=1}^{2}\left\{p_{2 k-1}\left[F_{2 k-1} \operatorname{coSh}_{0(2 k-1)}(\xi)+F_{2 k} \operatorname{siCh}_{0(2 k-1)}(\xi)\right]\right. \\
\left.+q_{2 k-1}\left[F_{2 k-1} \operatorname{siCh}_{0(2 k-1)}(\xi)-F_{2 k} \operatorname{coSh}_{0(2 k-1)}(\xi)\right]\right\} ; \\
Q_{1}^{(s)}(\xi)=G_{1} \operatorname{coCh}_{00}(\xi)+G_{2} \operatorname{siSh}_{00}(\xi), \quad Q_{2}^{(s)}(\xi)=G_{2} \operatorname{coCh}_{00}(\xi)-G_{1} \operatorname{siSh}_{00}(\xi) ; \tag{3.10}\\
R_{1}^{(s)}(\xi)=F_{1} \operatorname{coCh}_{01}(\xi)+F_{2} \operatorname{siSh}_{01}(\xi)+F_{3} \operatorname{coCh}_{03}(\xi)+F_{4} \operatorname{siSh}_{03}(\xi) \\
R_{2}^{(s)}(\xi)=F_{2} \operatorname{coCh}_{01}(\xi)-F_{1} \operatorname{siSh}_{01}(\xi)+F_{4} \operatorname{coCh}_{03}(\xi)-F_{3} \operatorname{siSh}_{03}(\xi)
\end{gather*}
$$

The solution of problem (1.7)-(1.9) with boundary conditions (1.4) is represented as the sums

$$
\begin{gather*}
U_{j}(x, y)=\sum_{k=1}^{3}\left[P_{j}^{(a)}\left(\xi_{k}\right) n_{k x}-Q_{j}^{(s)}\left(\xi_{k}\right) n_{k y}\right], \quad T_{j}(x, y)=\sum_{k=1}^{3} R_{j}^{(s)}\left(\xi_{k}\right), \\
V_{j}(x, y)=\sum_{k=1}^{3}\left[P_{j}^{(a)}\left(\xi_{k}\right) n_{k y}+Q_{j}^{(s)}\left(\xi_{k}\right) n_{k x}\right], \quad j=1,2 . \tag{3.11}
\end{gather*}
$$

By virtue of Properties 1 and 2, the functions U_{j}, V_{j}, and T_{j} in (3.11) satisfy Eqs. (1.7)-(1.9). It remains to satisfy boundary conditions (1.4), which previously need to be transformed. For this, we write the normal displacement component $\left.u_{n}\right|_{\Gamma}=\left.\left(u n_{x}+v n_{y}\right)\right|_{\Gamma}$ on the boundary Γ in the form

$$
\begin{equation*}
\left.\left(U_{j} n_{x}+V_{j} n_{y}\right)\right|_{\Gamma}=u_{j 0}, \quad j=1,2 \tag{3.12}
\end{equation*}
$$

In these problems, it is assumed that all analytical relations similar to (3.11) are equally valid for the sides of the equilateral triangle; therefore, it is sufficient that all boundary conditions are satisfied on one side, for example, on the side $\xi_{3}=0$. Then, on the other two sides of the triangle for $\xi_{1}=0$ or $\xi_{2}=0$, the boundary conditions are satisfied automatically. For the points (x, y) on the side of the triangle $\xi_{3}=0$ between the variables ξ_{1} and ξ_{2}, we have

$$
\begin{equation*}
\xi_{3}=0: \quad \xi_{1}+\xi_{2}=2 h \tag{3.13}
\end{equation*}
$$

Substituting U_{j} and V_{j} from (3.11) into (3.12) for $\xi_{3}=0$ and using (3.13), we obtain the following two equations:

$$
\begin{gathered}
{\left[P_{j}^{(a)}\left(\xi_{1}\right)\left(\boldsymbol{n}_{1} \boldsymbol{n}_{3}\right)+P_{j}^{(a)}\left(2 h-\xi_{1}\right)\left(\boldsymbol{n}_{2} \boldsymbol{n}_{3}\right)\right]+P_{j}^{(a)}(0)} \\
+\left[Q_{j}^{(s)}\left(\xi_{1}\right) \boldsymbol{n}_{1} \times \boldsymbol{n}_{3}+Q_{j}^{(s)}\left(2 h-\xi_{1}\right) \boldsymbol{n}_{2} \times \boldsymbol{n}_{3}\right]=u_{j 0} \quad(j=1,2)
\end{gathered}
$$

Using properties (3.2) and (3.9), it is easy show that all terms containing the variable ξ_{1} in square brackets are mutually cancelled; therefore,

$$
\begin{equation*}
P_{j}^{(a)}(0)=u_{j 0} \quad(j=1,2) \tag{3.14}
\end{equation*}
$$

We consider the boundary condition in (1.4) for the heat flux on the side $\xi_{3}=0$. After substitution of $T_{j}(x, y)$ from (3.11), this condition becomes

$$
\begin{equation*}
\left[R_{j}^{(s) \prime}\left(\xi_{1}\right)\left(\boldsymbol{n}_{1} \boldsymbol{n}_{3}\right)+R_{j}^{(s) \prime}\left(2 h-\xi_{1}\right)\left(\boldsymbol{n}_{2} \boldsymbol{n}_{3}\right)\right]+R_{j}^{(s) \prime}(0)=q_{j 0}, \quad j=1,2 . \tag{3.15}
\end{equation*}
$$

Using (3.2) and (3.9), one can prove that the expression in square brackets in (3.15) vanishes and, hence,

$$
\begin{equation*}
R_{j}^{(s) \prime}(0)=q_{j 0}, \quad j=1,2 \tag{3.16}
\end{equation*}
$$

The system of four equations (3.14), (3.16) for the coefficients F_{1}, \ldots, F_{4} is represented in explicit form

$$
\begin{array}{r}
\sum_{k=1}^{2}\left\{p_{2 k-1}\left[F_{2 k-1} \operatorname{siCh}_{0(2 k-1)}(h)-F_{2 k} \operatorname{coSh}_{0(2 k-1)}(h)\right]\right. \\
\left.+q_{2 k-1}\left[F_{2 k-1} \operatorname{coSh}_{0(2 k-1)}(h)+F_{2 k} \operatorname{siCh}_{0(2 k-1)}(h)\right]\right\}=u_{10} \\
\sum_{k=1}^{2}\left\{p_{2 k-1}\left[F_{2 k-1} \operatorname{coSh}_{0(2 k-1)}(h)+F_{2 k} \operatorname{siCh}_{0(2 k-1)}(h)\right]\right. \\
\left.+q_{2 k-1}\left[F_{2 k} \operatorname{coSh}_{0(2 k-1)}(h)-F_{2 k-1} \operatorname{siCh}_{0(2 k-1)}(h)\right]\right\}=u_{20}, \\
\sum_{k=1}^{2}\left\{F_{2 k-1}\left[\beta_{0(2 k-1)} \operatorname{siCh}_{0(2 k-1)}(h)-\alpha_{0(2 k-1)} \operatorname{coSh}_{0(2 k-1)}(h)\right]\right. \tag{3.17}\\
\left.-F_{2 k}\left[\beta_{0(2 k-1)} \operatorname{coSh}_{0(2 k-1)}(h)+\alpha_{0(2 k-1)} \operatorname{siCh}_{0(2 k-1)}(h)\right]\right\}=q_{10} \\
\left.+F_{2 k}\left[\beta_{0(2 k-1)} \operatorname{siCh}_{0(2 k-1)}(h)-\alpha_{0(2 k-1)} \operatorname{coSh}_{0(2 k-1)}(h)\right]\right\}=q_{20} .
\end{array}
$$

The linear system (3.17) is easily solved on a computer. It remains to elucidate whether there are cases where the above equations have no solution. We show that the determinant of the system is always $\Delta_{1}^{*}>0$. Using the properties of Eqs. (3.17), instead of $F_{1}^{*}, \ldots, F_{4}^{*}$ we introduce the new unknown complexes x_{1}, \ldots, x_{4} :

$$
\begin{array}{ll}
x_{1}=F_{1} \operatorname{siCh}_{01}(h)-F_{2} \operatorname{coSh}_{01}(h), & x_{2}=F_{1} \operatorname{coSh}_{01}(h)+F_{2} \operatorname{siCh}_{01}(h), \\
x_{3}=F_{3} \operatorname{siCh}_{03}(h)-F_{4} \operatorname{coSh}_{03}(h), & x_{4}=F_{3} \operatorname{coSh}_{03}(h)+F_{4} \operatorname{siCh}_{03}(h) . \tag{3.18}
\end{array}
$$

In the notation (3.18), system (3.17) becomes simpler:

$$
\begin{align*}
\beta_{01} x_{1}-\alpha_{01} x_{2}+\beta_{03} x_{3}-\alpha_{03} x_{4}=q_{10}, & \alpha_{01} x_{1}+\beta_{01} x_{2}+\alpha_{03} x_{3}+\beta_{03} x_{4}=q_{20} \\
p_{1} x_{1}+q_{1} x_{2}+p_{3} x_{3}+q_{3} x_{4}=u_{10}, & -q_{1} x_{1}+p_{1} x_{2}-q_{3} x_{3}+p_{3} x_{4}=u_{20} \tag{3.19}
\end{align*}
$$

The determinant of Eqs. (3.19) can be written in convenient form. After some transformations, Δ_{1}^{*} is expressed as

$$
\begin{gather*}
\Delta_{1}^{*}=\left[\left(\operatorname{coSh}_{01}(h)\right)^{2}+\left(\operatorname{siCh}_{01}(h)\right)^{2}\right]\left[\left(\operatorname{coSh}_{03}(h)\right)^{2}+\left(\operatorname{siCh}_{03}(h)\right)^{2}\right] \\
\times\left[\left(P_{1}^{*} R_{3}^{*}\right)^{2}+\left(P_{3}^{*} R_{1}^{*}\right)^{2}-2\left(P_{1}^{*} P_{3}^{*} R_{1}^{*} R_{3}^{*}\right) \cos \left(\psi_{1}-\psi_{3}+\varphi_{3}-\varphi_{1}\right)\right]>0 \tag{3.20}\\
P_{j}^{*}=\sqrt{p_{j}^{2}+q_{j}^{2}}, \quad \psi_{j}=\arctan \left(q_{j} / p_{j}\right), \quad j=1,3
\end{gather*}
$$

From the closed system (3.17), we obtain the constants F_{1}, \ldots, F_{4}, whose explicit expressions are cumbersome and are not given here.

In accordance with (1.1), the boundary condition for the tangential stress in (1.4) can be written as

$$
\begin{equation*}
\left.\tau_{n}\right|_{\Gamma}=\left.2 \mu \gamma_{n}\right|_{\Gamma}+\left.2 \eta \frac{\partial}{\partial t} \gamma_{n}\right|_{\Gamma}=\tau_{10} \cos \omega t+\tau_{20} \sin \omega t \tag{3.21}
\end{equation*}
$$

If the normal direction on the boundary Γ is defined by the unit vector $\boldsymbol{n}=\left(n_{x}, n_{y}\right)$, then the tangential direction on Γ for the plane problem is defined by the unit vector $\boldsymbol{\tau}=\left(-n_{y}, n_{x}\right)$. Then, the tangential component of the displacement vector on Γ is expressed as

$$
\left.u_{\tau}\right|_{\Gamma}=\left.\left(-u n_{y}+v n_{x}\right)\right|_{\Gamma} .
$$

Since in boundary conditions (1.4) on Γ, the normal component u_{n} is specified to be constant at the points of the boundary, the expressions for the shear γ_{n} and the shear rate $\partial \gamma_{n} / \partial t$ can be simplified:

$$
\left.2 \gamma_{n}\right|_{\Gamma}=\left.\frac{\partial u_{\tau}}{\partial n}\right|_{\Gamma}=\left.\left(\frac{\partial v}{\partial n} n_{x}-\frac{\partial u}{\partial n} n_{y}\right)\right|_{\Gamma},\left.\quad 2 \frac{\partial}{\partial t} \gamma_{n}\right|_{\Gamma}=\left.\frac{\partial}{\partial t}\left(\frac{\partial v}{\partial n} n_{x}-\frac{\partial u}{\partial n} n_{y}\right)\right|_{\Gamma}
$$

As a result, boundary conditions (3.21) on the triangle side $\xi_{3}=0$ have the form

$$
\begin{align*}
& \left.\mu \frac{\partial}{\partial n_{3}}\left(V_{1} n_{3 x}-U_{1} n_{3 y}\right)\right|_{\xi_{3}=0}+\left.\eta \omega \frac{\partial}{\partial n_{3}}\left(V_{2} n_{3 x}-U_{2} n_{3 y}\right)\right|_{\xi_{3}=0}=\tau_{10} \\
& \left.\mu \frac{\partial}{\partial n_{3}}\left(V_{2} n_{3 x}-U_{2} n_{3 y}\right)\right|_{\xi_{3}=0}-\left.\eta \omega \frac{\partial}{\partial n_{3}}\left(V_{1} n_{3 x}-U_{1} n_{3 y}\right)\right|_{\xi_{3}=0}=\tau_{20} \tag{3.22}
\end{align*}
$$

Equation (3.22) implies

$$
\begin{equation*}
\left.\frac{\partial}{\partial n_{3}}\left(V_{j} n_{3 x}-U_{j} n_{3 y}\right)\right|_{\xi_{3}=0}=\tau_{j}^{*}, \quad \tau_{j}^{*}=\frac{\mu \tau_{j 0}+(-1)^{j} \eta \omega \tau_{(3-j) 0}}{\mu^{2}+\eta^{2} \omega^{2}} \quad(j=1,2) \tag{3.23}
\end{equation*}
$$

Substitution of U_{j} and V_{j} from (3.11) into the left part of boundary conditions (3.23) yields two equations

$$
\begin{align*}
\frac{\partial}{\partial n_{3}}\left[-P_{j}^{(a)}\left(\xi_{1}\right) \boldsymbol{n}_{1} \times \boldsymbol{n}_{3}-P_{j}^{(a)}\left(\xi_{2}\right) \boldsymbol{n}_{2} \times \boldsymbol{n}_{3}\right. \\
\left.+Q_{j}^{(s)}\left(\xi_{1}\right) \boldsymbol{n}_{1} \boldsymbol{n}_{3}+Q_{j}^{(s)}\left(\xi_{2}\right) \boldsymbol{n}_{2} \boldsymbol{n}_{3}+Q_{j}^{(s)}\left(\xi_{3}\right)\right]\left.\right|_{\xi_{3}=0}=\tau_{j}^{*} \quad(j=1,2) \tag{3.24}
\end{align*}
$$

Equation (3.24) can be simplified using the following property for the derivatives:

$$
\begin{equation*}
\frac{\partial}{\partial n_{3}} F\left(\xi_{j}\right)=F^{\prime}\left(\xi_{j}\right) \boldsymbol{n}_{j} \boldsymbol{n}_{3}=-\frac{1}{2} F^{\prime}\left(\xi_{j}\right) \quad(j=1,2), \quad \frac{\partial}{\partial n_{3}} F\left(\xi_{3}\right)=F^{\prime}\left(\xi_{3}\right) \tag{3.25}
\end{equation*}
$$

By virtue of (3.25) and properties (3.2), boundary conditions (3.24) become

$$
\begin{gather*}
(\sqrt{3} / 4)\left[P_{j}^{(a) \prime}\left(2 h-\xi_{1}\right)-P_{j}^{(a) \prime}\left(\xi_{1}\right)\right] \\
+(1 / 4)\left[Q_{j}^{(s) \prime}\left(\xi_{1}\right)+Q_{j}^{(s)^{\prime}}\left(2 h-\xi_{1}\right)\right]+Q_{j}^{(s) \prime}(0)=\tau_{j}^{*} \quad(j=1,2) \tag{3.26}
\end{gather*}
$$

By virtue of properties (3.9) and (3.26), the expressions in square brackets vanish, and, hence,

$$
Q_{j}^{(s) \prime}(0)=\tau_{j}^{*} \quad(j=1,2)
$$

From this, we find the coefficients G_{1} and G_{2} :

$$
\begin{align*}
& G_{1}=\left[\tau_{1}^{*}\left(\beta_{00} \operatorname{siCh}_{00}(h)-\alpha_{00} \operatorname{coSh}_{00}(h)\right)+\tau_{2}^{*}\left(\alpha_{00} \operatorname{siCh}_{00}(h)+\beta_{00} \operatorname{coSh}_{00}(h)\right)\right] / \Delta_{q 1} \\
& G_{2}=\left[\tau_{2}^{*}\left(\beta_{00} \operatorname{siCh}_{00}(h)-\alpha_{00} \operatorname{coSh}_{00}(h)\right)-\tau_{1}^{*}\left(\alpha_{00} \operatorname{siCh}_{00}(h)+\beta_{00} \operatorname{coSh}_{00}(h)\right)\right] / \Delta_{q 1} \tag{3.27}
\end{align*}
$$

The determinant $\Delta_{q 1}$ is expressed as

$$
\begin{equation*}
\Delta_{q 1}=\left(\alpha_{00}^{2}+\beta_{00}^{2}\right)\left[\cosh \left(\alpha_{00} 2 h\right)-\cos \left(\beta_{00} 2 h\right)\right] / 2>0 \tag{3.28}
\end{equation*}
$$

From inequality (3.28), it follows that solution (3.27) is unique. All expressions of the first exact solution of problem (1.2)-(1.4) for a viscoelastic rod of triangular cross section are cumbersome; therefore, we will not give its final form and only indicate the sequence of calculations that lead to this solution: the displacements u and v and the temperature T are determined from (1.6), the amplitudes U_{j}, V_{j}, and T_{j} from $(3.11), P_{j}^{(a)}, R_{j}^{(s)}$, and $Q_{j}^{(s)}$ from (3.10), the coefficients F_{1}, \ldots, F_{4} from the algebraic system (3.17), G_{1} and G_{2} from (3.20), and the determinants Δ_{1}^{*} and $\Delta_{q 1}$ from (3.20) and (3.28). In numerical implementation of the solution, all manipulations should be performed in the reverse order: the determinants Δ_{1}^{*} and $\Delta_{q 1}$ are first calculated from (3.20) and (3.28), 586
the coefficients F_{1}, \ldots, F_{4} are then found from (3.17), G_{1} and G_{2} from (3.27), etc. The displacements u and v and the temperature T are expressed in terms of continuous and differentiable functions; therefore, the temperature, strains and strain rates can be found from the well-known formulas of the linear theory of thermoviscoelasticity and the stress is found from (1.1).
4. Second Exact Solution. The solution of problem (1.7)-(1.9) with boundary conditions (1.5) can be represented as the sums

$$
\begin{gather*}
U_{j}(x, y)=\sum_{k=1}^{3}\left[P_{j}^{(s)}\left(\xi_{k}\right) n_{k x}-Q_{j}^{(a)}\left(\xi_{k}\right) n_{k y}\right], \quad T_{j}(x, y)=\sum_{k=1}^{3} R_{j}^{(a)}\left(\xi_{k}\right), \\
V_{j}(x, y)=\sum_{k=1}^{3}\left[P_{j}^{(s)}\left(\xi_{k}\right) n_{k y}+Q_{j}^{(a)}\left(\xi_{k}\right) n_{k x}\right], \quad j=1,2 \tag{4.1}
\end{gather*}
$$

where

$$
\begin{gathered}
P_{1}^{(s)}(\xi)=\sum_{k=1}^{2}\left\{p_{2 k-1}\left[F_{2 k}^{*} \operatorname{coCh}_{0(2 k-1)}(\xi)-F_{2 k-1}^{*} \operatorname{siSh}_{0(2 k-1)}(\xi)\right]\right. \\
\left.-q_{2 k-1}\left[F_{2 k-1}^{*} \operatorname{coCh}_{0(2 k-1)}(\xi)+F_{2 k}^{*} \operatorname{siSh}_{0(2 k-1)}(\xi)\right]\right\} \\
P_{2}^{(s)}(\xi)=\sum_{k=1}^{2}\left\{q_{2 k-1}\left[F_{2 k-1}^{*} \operatorname{siSh}_{0(2 k-1)}(\xi)-F_{2 k}^{*} \operatorname{coCh}_{0(2 k-1)}(\xi)\right]\right. \\
\left.-p_{2 k-1}\left[F_{2 k-1}^{*} \operatorname{coCh}_{0(2 k-1)}(\xi)+F_{2 k}^{*} \operatorname{siSh}_{0(2 k-1)}(\xi)\right]\right\}, \\
Q_{1}^{(a)}(\xi)=G_{1}^{*} \operatorname{coSh}_{00}(\xi)+G_{2}^{*} \operatorname{siCh}_{00}(\xi), \quad Q_{2}^{(a)}(\xi)=G_{2}^{*} \operatorname{coSh}_{00}(\xi)-G_{1}^{*} \operatorname{siCh}_{00}(\xi), \\
R_{1}^{(a)}(\xi)=F_{1}^{*} \operatorname{coSh}_{01}(\xi)+F_{2}^{*} \operatorname{siCh}_{01}(\xi)+F_{3}^{*} \operatorname{coSh}_{03}(\xi)+F_{4}^{*} \operatorname{siCh}_{03}(\xi) \\
R_{2}^{(a)}(\xi)=F_{2}^{*} \operatorname{coSh}_{01}(\xi)-F_{1}^{*} \operatorname{siCh}_{01}(\xi)+F_{4}^{*} \operatorname{coSh}_{03}(\xi)-F_{3}^{*} \operatorname{siCh}_{03}(\xi), \\
F_{1}^{*}=2\left(A_{01}-A_{02}\right), \quad F_{2}^{*}=2\left(C_{01}-C_{02}\right), \quad F_{3}^{*}=2\left(A_{03}-A_{04}\right), \\
F_{4}^{*}=2\left(C_{03}-C_{04}\right), \quad G_{1}^{*}=2\left(D_{1}-D_{3}\right), \quad G_{2}^{*}=2\left(D_{2}+D_{4}\right)
\end{gathered}
$$

In the construction of the second exact solution with the boundary conditions having the form (1.5), the condition for the tangential component of the displacement vector $\left.u_{\tau}\right|_{\Gamma}=\left.\left(v n_{x}-u n_{y}\right)\right|_{\Gamma}$ implies

$$
\begin{equation*}
\left.\left(V_{j} n_{x}-U_{j} n_{y}\right)\right|_{\Gamma}=v_{j 0}, \quad j=1,2 \tag{4.2}
\end{equation*}
$$

Substitution of (4.1) into (4.2) for $\xi_{3}=0$ yields the expression

$$
\begin{array}{r}
-\left[P_{j}^{(s)}\left(\xi_{1}\right)\left(\boldsymbol{n}_{1} \times \boldsymbol{n}_{3}\right)+P_{j}^{(s)}\left(2 h-\xi_{1}\right)\left(\boldsymbol{n}_{2} \times \boldsymbol{n}_{3}\right)\right] \\
+\left[Q_{j}^{(a)}\left(\xi_{1}\right)\left(\boldsymbol{n}_{1} \boldsymbol{n}_{3}\right)+Q_{j}^{(a)}\left(2 h-\xi_{1}\right)\left(\boldsymbol{n}_{2} \boldsymbol{n}_{3}\right)\right]+Q_{j}^{(a)}(0)=v_{j 0} \quad(j=1,2) \tag{4.3}
\end{array}
$$

Using the properties (3.2) and (3.9), one can show that the expressions in square brackets containing the variable ξ_{1} vanish; therefore, Eq. (4.3) implies

$$
\begin{equation*}
Q_{j}^{(a)}(0)=v_{j 0} \quad(j=1,2) \tag{4.4}
\end{equation*}
$$

Let us write two equations (4.4) for G_{1}^{*} and G_{2}^{*} :

$$
\begin{aligned}
& G_{1}^{*} \cos \left(\beta_{00} h\right) \sinh \left(\alpha_{00} h\right)+G_{2}^{*} \sin \left(\beta_{00} h\right) \cosh \left(\alpha_{00} h\right)=-v_{10} \\
& -G_{1}^{*} \sin \left(\beta_{00} h\right) \cosh \left(\alpha_{00} h\right)+G_{2}^{*} \cos \left(\beta_{00} h\right) \sinh \left(\alpha_{00} h\right)=-v_{20}
\end{aligned}
$$

The determinant of these equations $\Delta_{q 2}>0$; therefore, this system has the solution

$$
G_{1}^{*}=\left[v_{20} \sin \left(\beta_{00} h\right) \cosh \left(\alpha_{00} h\right)-v_{10} \cos \left(\beta_{00} h\right) \sinh \left(\alpha_{00} h\right)\right] / \Delta_{q 2}
$$

$$
\begin{gathered}
G_{2}^{*}=-\left[v_{10} \sin \left(\beta_{00} h\right) \cosh \left(\alpha_{00} h\right)+v_{20} \cos \left(\beta_{00} h\right) \sinh \left(\alpha_{00} h\right)\right] / \Delta_{q 2} \\
\Delta_{q 2}=\cosh \left(2 \alpha_{00} h\right)-\cos \left(2 \beta_{00} h\right)>0
\end{gathered}
$$

To satisfy the second boundary condition in (1.5), we transform the expression for the normal stress. Since on the boundary Γ, the tangential component u_{τ} is constant, the stress $\left.\sigma_{n}\right|_{\Gamma}$ can be represented as

$$
\begin{equation*}
\left.\sigma_{n}\right|_{\Gamma}=\left.\lambda_{0} \frac{\partial u_{n}}{\partial n}\right|_{\Gamma}+\left.\zeta_{0} \frac{\partial}{\partial n} \frac{\partial u_{n}}{\partial t}\right|_{\Gamma}=\sigma_{10} \cos \omega t+\sigma_{20} \sin \omega t \tag{4.5}
\end{equation*}
$$

Substitution of $\left.u_{n}\right|_{\Gamma}$ from expression (3.12) into (4.5) yields

$$
\begin{align*}
& \left.\lambda_{0} \frac{\partial}{\partial n_{3}}\left(U_{1} n_{3 x}+V_{1} n_{3 y}\right)\right|_{\xi_{3}=0}+\left.\zeta_{0} \omega \frac{\partial}{\partial n_{3}}\left(U_{2} n_{3 x}+V_{2} n_{3 y}\right)\right|_{\xi_{3}=0}=\sigma_{10} \\
& \left.\lambda_{0} \frac{\partial}{\partial n_{3}}\left(U_{2} n_{3 x}+V_{2} n_{3 y}\right)\right|_{\xi_{3}=0}-\left.\zeta_{0} \omega \frac{\partial}{\partial n_{3}}\left(U_{1} n_{3 x}+V_{1} n_{3 y}\right)\right|_{\xi_{3}=0}=\sigma_{20} \tag{4.6}
\end{align*}
$$

Equation (4.6) implies

$$
\begin{equation*}
\left.\frac{\partial}{\partial n_{3}}\left(U_{j} n_{3 x}+V_{j} n_{3 y}\right)\right|_{\xi_{3}=0}=N_{j}, \quad N_{j}=\frac{\lambda_{0} \sigma_{j 0}+(-1)^{j} \zeta_{0} \omega \sigma_{(3-j) 0}}{\lambda_{0}^{2}+\zeta_{0}^{2} \omega^{2}} \quad(j=1,2) \tag{4.7}
\end{equation*}
$$

Substitution of U_{j} and V_{j} from (4.1) into the left side of boundary conditions (4.7) yields two equations

$$
\begin{gather*}
\frac{\partial}{\partial n_{3}}\left[P_{j}^{(s)}\left(\xi_{1}\right) \boldsymbol{n}_{1} \boldsymbol{n}_{3}+P_{j}^{(s)}\left(\xi_{2}\right) \boldsymbol{n}_{2} \boldsymbol{n}_{3}+P_{j}^{(s)}\left(\xi_{3}\right)\right. \\
\left.+Q_{j}^{(a)}\left(\xi_{1}\right) \boldsymbol{n}_{1} \times \boldsymbol{n}_{3}+Q_{j}^{(a)}\left(\xi_{2}\right) \boldsymbol{n}_{2} \times \boldsymbol{n}_{3}\right]\left.\right|_{\xi_{3}=0}=N_{j} \quad(j=1,2) \tag{4.8}
\end{gather*}
$$

In view of the properties (3.2) and (3.23), boundary conditions (4.8) become

$$
\begin{array}{r}
(1 / 4)\left[P_{j}^{(s) \prime}\left(\xi_{1}\right)+P_{j}^{(s) \prime}\left(h-\xi_{1}\right)\right] \\
+(\sqrt{3} / 4)\left[Q_{j}^{(a) \prime}\left(h-\xi_{1}\right)-Q_{j}^{(a) \prime}\left(\xi_{1}\right)\right]+P_{j}^{(s) \prime}(0)=N_{j} \quad(j=1,2) . \tag{4.9}
\end{array}
$$

From (3.9) it follows that expressions in square brackets vanish; therefore, from (4.9) we obtain two equations

$$
\begin{equation*}
P_{j}^{(s) \prime}(0)=N_{j} \quad(j=1,2) \tag{4.10}
\end{equation*}
$$

It remains to satisfy the boundary condition in (1.5) for the temperature on the triangle side $\xi_{3}=0$. After substitution of $T_{j}(x, y)$ from (4.1), this condition becomes

$$
\begin{equation*}
\left[R_{j}^{(a)}\left(\xi_{1}\right)+R_{j}^{(a)}\left(2 h-\xi_{1}\right)\right]+R_{j}^{(a)}(0)=T_{j 0}, \quad j=1,2 \tag{4.11}
\end{equation*}
$$

Using (3.9), it is easy to show that the expression in square brackets vanish. Then, from (4.11) we obtain

$$
\begin{equation*}
R_{j}^{(a)}(0)=T_{j 0}, \quad j=1,2 . \tag{4.12}
\end{equation*}
$$

The system of four equations (4.10), (4.12) for the coefficients $F_{1}^{*}, \ldots, F_{4}^{*}$ is written in explicit form

$$
\begin{aligned}
& \sum_{k=1}^{2}\left\{q_{2 k-1} F_{2 k-1}^{*}\left[\alpha_{0(2 k-1)} \operatorname{coSh}_{0(2 k-1)}(h)-\beta_{0(2 k-1)} \operatorname{siCh}_{0(2 k-1)}(h)\right]\right. \\
& \quad+q_{2 k-1} F_{2 k}^{*}\left[\alpha_{0(2 k-1)} \operatorname{siCh}_{0(2 k-1)}(h)+\beta_{0(2 k-1)} \operatorname{coSh}_{0(2 k-1)}(h)\right] \\
& \quad+p_{2 k-1} F_{2 k}^{*}\left[\beta_{0(2 k-1)} \operatorname{siCh}_{0(2 k-1)}(h)-\alpha_{0(2 k-1)} \operatorname{coSh}_{0(2 k-1)}(h)\right] \\
& \left.+p_{2 k-1} F_{2 k-1}^{*}\left[\alpha_{0(2 k-1)} \operatorname{siCh}_{0(2 k-1)}(h)+\beta_{0(2 k-1)} \operatorname{coSh}_{0(2 k-1)}(h)\right]\right\}=N_{1}, \\
& \quad \sum_{k=1}^{2}\left\{q_{2 k-1} F_{2 k}^{*}\left[\alpha_{0(2 k-1)} \operatorname{coSh}_{0(2 k-1)}(h)-\beta_{0(2 k-1)} \operatorname{siCh}_{0(2 k-1)}(h)\right]\right.
\end{aligned}
$$

$$
\begin{gather*}
-q_{2 k-1} F_{2 k-1}^{*}\left[\alpha_{0(2 k-1)} \operatorname{siCh}_{0(2 k-1)}(h)+\beta_{0(2 k-1)} \operatorname{coSh}_{0(2 k-1)}(h)\right] \tag{4.13}\\
+p_{2 k-1} F_{2 k-1}^{*}\left[\alpha_{0(2 k-1)} \operatorname{coSh}_{0(2 k-1)}(h)-\beta_{0(2 k-1)} \operatorname{siCh}_{0(2 k-1)}(h)\right] \\
\left.+p_{2 k-1} F_{2 k}^{*}\left[\alpha_{0(2 k-1)} \operatorname{siCh}_{0(2 k-1)}(h)+\beta_{0(2 k-1)} \operatorname{coSh}_{0(2 k-1)}(h)\right]\right\}=N_{2}, \\
\sum_{k=1}^{2}\left[F_{2 k-1}^{*} \operatorname{coSh}_{0(2 k-1)}(h)+F_{2 k}^{*} \operatorname{siCh}_{0(2 k-1)}(h)\right]=-T_{10} \\
\quad \sum_{k=1}^{2}\left[F_{2 k}^{*} \operatorname{coSh}_{0(2 k-1)}(h)-F_{2 k-1}^{*} \operatorname{siCh}_{0(2 k-1)}(h)\right]=-T_{20}
\end{gather*}
$$

The linear system of four equations (4.13) is easily solved on a computer. It remains to elucidate whether there are cases where these equations have no solution. We prove that the determinant of the system is always $\Delta_{2}^{*}>0$. To write the determinant in convenient form, we use the properties of Eqs. (4.13) and replace the coefficients $F_{1}^{*}, \ldots, F_{4}^{*}$ by new unknown complexes $x_{1}^{*}, \ldots, x_{4}^{*}$:

$$
\begin{array}{ll}
x_{1}^{*}=F_{1}^{*} \operatorname{siCh}_{01}(h)-F_{2}^{*} \operatorname{coSh}_{01}(h), & x_{2}^{*}=F_{1}^{*} \operatorname{coSh}_{01}(h)+F_{2}^{*} \operatorname{siCh}_{01}(h), \tag{4.14}\\
x_{3}^{*}=F_{3}^{*} \operatorname{siCh}_{03}(h)-F_{4}^{*} \operatorname{coSh}_{03}(h), & x_{4}^{*}=F_{3}^{*} \operatorname{coSh}_{03}(h)+F_{4}^{*} \operatorname{siCh}_{03}(h) .
\end{array}
$$

In notation (4.14), system (4.13) is simplified:

$$
\begin{gather*}
\left(p_{1} \alpha_{01}-q_{1} \beta_{01}\right) x_{1}+\left(p_{1} \beta_{01}+q_{1} \alpha_{01}\right) x_{2}+\left(p_{3} \alpha_{03}-q_{3} \beta_{03}\right) x_{3}+\left(p_{3} \beta_{03}+q_{3} \alpha_{03}\right) x_{4}=N_{1}, \\
\left(p_{1} \alpha_{01}-q_{1} \beta_{01}\right) x_{2}-\left(p_{1} \beta_{01}+q_{1} \alpha_{01}\right) x_{1}-\left(p_{3} \beta_{03}+q_{3} \alpha_{03}\right) x_{3}+\left(p_{3} \alpha_{03}-q_{3} \beta_{03}\right) x_{4}=N_{2} \tag{4.15}\\
-x_{1}-x_{3}=-T_{20}, \quad x_{2}+x_{4}=-T_{10}
\end{gather*}
$$

The determinant of Eqs. (4.15) can be written in compact form. After some transformations for Δ_{2}^{*}, we obtain the expression

$$
\begin{gathered}
\Delta_{2}^{*}=\left[\left(\operatorname{coSh}_{01}(h)\right)^{2}+\left(\operatorname{siCh}_{01}(h)\right)^{2}\right]\left[\left(\operatorname{coSh}_{03}(h)\right)^{2}+\left(\operatorname{siCh}_{03}(h)\right)^{2}\right] \\
\times\left[\left(q_{1} \beta_{01}-p_{1} \alpha_{01}-q_{3} \beta_{03}+p_{3} \alpha_{03}\right)^{2}+\left(p_{1} \beta_{01}+q_{1} \alpha_{01}-p_{3} \beta_{03}-q_{3} \alpha_{03}\right)^{2}\right]>0
\end{gathered}
$$

From the closed system of equations (4.13), we find the constants $F_{1}^{*}, \ldots, F_{4}^{*}$, whose explicit expressions are cumbersome and are not given here.

In a thermoviscoelastic rod, the propagation of one temperature and two elastic waves (shear and longitudinal) is possible. The characteristics of these waves are determined by the real and imaginary parts of the roots α_{j} and $\beta_{j}(j=1, \ldots, 4)$. To establish which roots correspond to the waves listed above, we set the coupling and viscosity coefficients in Eq. (2.13) equal to zero ($k=\zeta_{0}=0$), i.e., $M_{e}=M_{v}=M_{\zeta}=0$. Then, from (2.14) we obtain

$$
\alpha_{1,2}= \pm \sqrt{\frac{\omega}{2 b}}(1+i), \quad \alpha_{3,4}= \pm \sqrt{N_{0} \frac{\omega}{b}}= \pm \omega \sqrt{\frac{\rho}{\lambda_{0}}} .
$$

From this it follows that the roots $\alpha_{1,2}$ define the parameters of the temperature wave and the roots $\alpha_{3,4}$ define the parameters of the longitudinal elastic wave. Because the model is coupled, both the temperature and elastic strains change in the temperature wave, and the temperature also changes in the longitudinal elastic wave. Only the shear wave does not influence the temperature field. Generally, the velocities of the temperature $\left(v_{T}\right)$, shear $\left(v_{\mu}\right)$, and longitudinal $\left(v_{\lambda}\right)$ elastic waves can be calculated by the formulas

$$
\begin{equation*}
v_{T}=\omega / \beta_{01}, \quad v_{\mu}=\omega / \beta_{00}, \quad v_{\lambda}=\omega / \beta_{03} \tag{4.16}
\end{equation*}
$$

The lengths of these waves are determined from the expressions

$$
\begin{equation*}
L_{T}=2 \pi / \beta_{01}, \quad L_{\mu}=2 \pi / \beta_{00}, \quad L_{\lambda}=2 \pi / \beta_{03} \tag{4.17}
\end{equation*}
$$

Formulas (4.16) and (4.17) and experimental data can be used to calculate the rheological characteristics of thermoviscoelastic materials. For example, the viscosity coefficients of many solids have not yet been determined. From the formulas for the characteristic roots, it follows that the temperature and strain fields are significantly affected by the dimensionless parameter R_{0}. In addition, a decrease in the coupling coefficient k leads to a decrease in the parameters M_{e}, M_{v}, and R_{0}. Thus, if the parameter R_{0} is small, the coupling in the formulation of the problem can be ignored and if $R_{0} \sim 1$ or $R_{0}>1$, the coupling should be considered. Account of the coupling also depends on the required calculation accuracy in the solution of the problem.

REFERENCES

1. V. A. Babeshko and V. V. Kalinchuk, "Method of fictitious absorption in coupled mixed problems of elasticity theory and mathematical physics for layered nonuniform half-space," Prikl. Mat. Mekh., 66, No. 2, 285-292 (2002).
2. V. A. Lomazov and Yu. V. Nemirovskii, "Allowance for temperature sensitivity in the problem of diagnostics of thermoelastic media," J. Appl. Mech. Tech. Phys., 44, No. 1. 146-153 (2003).
3. G. Ya. Popov, "Exact solutions of some mixed problems of coupled thermoelasticity for a finite circular hollow cylinder with a cut along the generatrix," Prikl. Mat. Mekh., 66, No. 4, 694-704 (2002).
4. A. D. Chernyshov, "Two-dimensional dynamic boundary-value problems for curvilinear thermoviscoelastic bodies," J. Appl. Mech. Tech. Phys., 46, No. 2, 281-290 (2005).
5. M. Reiner, "Rheology," in: Handbuch der Phizik, No. VI: Elastizität und Plastizität, Springer-Verlag, Berlin (1958).
6. V. D. Kupradze, Three-Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity [in Russian], Nauka, Moscow (1976).
7. A. D. Chernyshov, "Solution of the plane axisymmetric and spatial single-phase Stefan problem," Inzh. Fiz. Zh., 27, No. 2, 341-350 (1974).
