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DYNAMIC DEFORMATION OF A THERMOVISCOELASTIC ROD

OF TRIANGULAR CROSS SECTION IN A COUPLED FORMULATION

UDC 539A. D. Chernyshev

For the coupled model of a thermoviscoelastic rod of equilateral triangular cross section, two exact
solutions are obtained for the cases where a normal displacement and a shear stress or a tangential
displacement and a normal stress are specified on the lateral surface of the rod. A dimensionless
parameter R0 is introduced to judge the appropriateness of taking into account the coupling in the
formulation of the problem. Formulas are given for the velocities and lengths of the temperature,
shear, and longitudinal waves, which can be used in experiments to determine the physical properties
of thermoviscoelastic materials.
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The properties of a thermoelastic body in a dynamic mode was the subject of research in [1–4] and other
papers. The thermoviscoelastic model is a complex model, and dynamic problems have therefore been little studied.
The exact solutions of dynamic problems for a two-dimensional thermoviscoelastic body are unknown.

1. Formulation of the Problem. unlike in the majority of linear models, in the thermoviscoelastic model,
the mechanical properties of solids are most fully taken into account. Thermoviscoelastic properties are inherent
in metals and their alloys under small variable mechanical and thermal loads [5]. Materials with such complex
properties are described by various rheological models. For definiteness, we chose a model in which the elastic and
viscous strain and strain rate tensors coincide and the total strains are the sum of the elastic and temperature
strains. The stress tensor σij is expressed in terms of the strain tensors eij , strain rates εij , and temperature T as
follows:

σij = λ(ekk − 3αtT )δij + 2μ(eij − αtTδij) + ζ(εkk − 3αtTt)δij + 2η(εij − αtTtδij). (1.1)

Here λ and μ are the Lamé elastic coefficients, ζ and η are the viscosity coefficients, αt is the thermal-expansion
coefficient, δij is the unit Kronecker tensor, and ( · )t = ∂ ( · )/∂t.

Below, we consider dynamic problems under plane strain conditions. Substituting σij from (1.1) into the
equations of motion for a continuum, we obtain the following two differential equations for the displacements u
and v in Cartesian coordinates:

λ0uxx + (λ+ μ)vxy + μuyy + ζ0utxx + (ζ + η)vtxy + ηutyy − γeTx − γvTxt = ρutt,

λ0 = λ+ 2μ, ζ0 = ζ + 2η, (1.2)

λ0vyy + (λ + μ)uxy + μvxx + ζ0vtyy + (ζ + η)utxy + ηvtxx − γeTy − γvTyt = ρvtt,

γe = (3λ+ 2μ)αt, γv = (3ζ + 2η)αt.

These equations should be supplemented by the heat-conduction equation

bΔT − k(uxt + vyt) = Tt, k = γeT0/(Cρ). (1.3)
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In (1.2) and (1.3), T0 is the initial temperature, Δ is the Laplacian, ρ is the density, ( · )x = ∂ ( · )/∂x, ( · )y =
∂ ( · )/∂y, b is the thermal diffusivity, C is the specific heat, and k is the coupling coefficient (the term containing
this quantity takes into account the temperature variation in the solid due to adiabatic volume variation [6]). For
Eqs. (1.2) and (1.3), we specify two versions of conditions on the boundary Γ of the rod with an equilateral triangular
cross section of height 2h:
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Here un and uτ are the normal displacement and the displacement tangential to the boundary Γ of the material
points, τn and σn are the shear and normal stresses on the boundary of the rod, uj0, τj0, vj0, σj0, and Tj0

(j = 1, 2) are specified constants. Equations (1.1)–(1.5) constitute a linear problem. The material being deformed
is heated with time due to energy dissipation, which can be taken into account by the nonlinear term σv

ijε
v
ij in the

heat-conduction equation. For large values of t, the heating becomes substantial; therefore, the proposed linear
model, which ignores dissipation, is suitable only for initial times.

We consider the problem of harmonic oscillations without initial conditions. The solution of this problem is
sought in the form

u = U1(x, y) cosωt+ U2(x, y) sinωt, v = V1(x, y) cosωt+ V2(x, y) sinωt,

T = T1(x, y) cosωt+ T2(x, y) sinωt,
(1.6)

where Uj, Vj , and Tj are the amplitudes of the displacement and temperature oscillations in the region Ω. Substi-
tution of (1.6) into (1.2) and (1.3) yields the system

λ0U1xx + (λ + μ)V1xy + μU1yy + ωζ0U2xx + ω(ζ + η)V2xy + ωηU2yy − γeT1x − ωγvT2x + ρω2U1 = 0,

λ0U2xx + (λ + μ)V2xy + μU2yy − ωζ0U1xx − ω(ζ + η)V1xy − ωηU1yy − γeT2x + ωγvT1x + ρω2U2 = 0;
(1.7)

λ0V1yy + (λ+ μ)U1xy + μV1xx + ωζ0V2yy + ω(ζ + η)U2xy + ωηV2xx − γeT1y − ωγvT2y + ρω2V1 = 0,

λ0V2yy + (λ+ μ)U2xy + μV2xx − ωζ0V1yy − ω(ζ + η)U1xy − ωηV1xx − γeT2y + ωγvT1y + ρω2V2 = 0;
(1.8)

bΔT1 − ωk(U2x + V2y) − ωT2 = 0, bΔT2 + ωk(U1x + V1y) + ωT1 = 0. (1.9)

2. Solution for a Flat Strip. In this case, we assume that the quantities Uj , Vj and Tj (j = 1, 2) depend
only on the coordinate x. We introduce the following notation:

Uj = Pj(x), Vj = Qj(x), Tj = Rj(x) (j = 1, 2).

Equations (1.7)–(1.9) are simplified:

λ0P
′′
1 + ωζ0P

′′
2 − γeR

′
1 − ωγvR

′
2 + ρω2P1 = 0, λ0P

′′
2 − ωζ0P

′′
1 − γeR

′
2 + ωγvR

′
1 + ρω2P2 = 0,

bR′′
1 − ωkP ′

2 − ωR2 = 0, bR′′
2 + ωkP ′

1 + ωR1 = 0;
(2.1)

μQ′′
1 + ωηQ′′

2 + ρω2Q1 = 0, μQ′′
2 − ωηQ′′

1 + ρω2Q2 = 0. (2.2)

Here the unknown functions Pj and Rj enter system (2.1) because of the coupling nature of the model, and for Qj

we have separate independent equations (2.2). Particular solutions of system (2.1), (2.2) are sought in the form

Pj = Aj eαx, Qj = Bj eβx, Rj = Cj eαx (j = 1, 2). (2.3)
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Substitution of (2.3) into (2.1) and (2.2) yields the following system of equations for Aj , Bj , Cj , α, and β:

λ0α
2A1 + ωζ0α

2A2 − γeαC1 − ωγvαC2 + ρω2A1 = 0,

λ0α
2A2 − ωζ0α

2A1 − γeαC2 + ωγvαC1 + ρω2A2 = 0, (2.4)

bα2C1 − ωkαA2 − ωC2 = 0, bα2C2 + ωkαA1 + ωC1 = 0;

μβ2B1 + ωηβ2B2 + ρω2B1 = 0, μβ2B2 − ωηβ2B1 + ρω2B2 = 0. (2.5)

We first consider the simpler system (2.5). Equating its determinant to zero, we find four complex roots of
the characteristic equation:

β1,2 = ±(α00 − iβ00), β3,4 = ±(α00 + iβ00), β1,2 = β̄3,4,

α00 = ω

√
ρ

2μ

√

Gη − 1
Gη

, β00 = ω

√
ρ

2μ

√

Gη + 1
Gη

, Gη =

√

1 +
(ωη

μ

)2

.

(2.6)

Here the bar above denotes coupling. To obtain the general solution of system (2.5) in explicit form, it is necessary
to determine the coupling between the coefficients B1 and B2 for various values of β = βm (m = 1, . . . , 4). We
introduce the following notation:

B1(βm) = B1m, B2(βm) = B2m (m = 1, . . . , 4).

The coefficients B2m can be expressed in terms of the coefficients B1m, which will be treated as complex constants.
Substituting β = βm (m = 1, . . . , 4) into (2.5), we find the desired couplings:

B2j = −iB1j , B2 (j+2) = iB1(j+2), j = 1, 2. (2.7)

The general solution of system (2.2) becomes

Q1(x) =
4∑

m=1

B1m eβmx, Q2(x) = i
2∑

m=1

(B1(m+2) eβm+2x −B1m eβmx). (2.8)

The right sides of equalities (2.8) contain complex quantities, whereas Q1(x) and Q2(x) are real functions of the
real variable x. Therefore, these equations need to be reduced to a form that does not contain imaginary terms.
For this, we associate each complex conjugate pair of characteristic roots βm and βm+2 = β̄m in (2.6) with a pair
of complex conjugate coefficients:

B11 =
D1 + iD2

2
, B13 =

D1 − iD2

2
, B12 =

D3 − iD4

2
, B14 =

D3 + iD4

2
. (2.9)

Formulas (2.7) and (2.9) allow one to establish the following property: the sum of two terms in expres-
sions (2.8) that correspond to two complex conjugate characteristic roots βm and βm+2 = β̄m (m = 1, 2) is a real
function. We show this using the expression for Q1(x) as an example:

B11 eβ1x +B13 eβ3x = (D1 + iD2)(cosβ00x− i sinβ00x) eα00x /2

+ (D1 − iD2)(cos β00x+ i sinβ00x) eα00x /2 = (D1 cosβ00x+D2 sinβ00x) eα00x . (2.10)

In view of the property (2.10), the general solution (2.8) for a flat strip can be written in real form. If the variable x
is replaced by the difference x − h (which is reasonable for subsequent calculations), the expressions for Q1(x)
and Q2(x) become

Q1(x) = [D1 cosβ00(x− h) +D2 sinβ00(x − h)] eα00(x−h) + [D3 cosβ00(x− h) +D4 sinβ00(x− h)] eα00(h−x),

(2.11)
Q2(x) = [D2 cosβ00(x− h) −D1 sinβ00(x − h)] eα00(x−h) − [D4 cosβ00(x− h) −D3 sinβ00(x− h)] eα00(h−x) .

We now proceed to the solution of system (2.4). In finding the characteristic roots in explicit form from
the determinant of this system, we obtain an algebraic equation of the eighth order, which should be written in
compact form. For this, we find A1 and A2 from the second and third equalities of system (2.4):

ωkαA1 = −ωC1 − bα2C2, ωkαA2 = bα2C1 − ωC2. (2.12)
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Eliminating A1 and A2 from system (2.4) by using (2.12), we obtain two equations of the fourth order for α:

bλ0α
4 + (bρ+ ζ0 + kγv)ω2α2 = ±iω[−ζ0bα4 + (λ0 + kγe)α2 + ρω2]. (2.13)

From this, we find eight characteristic roots. We introduce the dimensionless parameters

N0 =
bρω

λ0
, Me =

kγe

λ0
=

(3λ+ 2μ)2α2
tT0

Cρ(λ + 2μ)
, Mv =

kγv

bρ
, Mζ =

ζ0
bρ

and notation

A∗ = N2
0 (1 +Mζ +Mv)2 − (1 +Me)2 − 4N2

0Mζ , B∗ = 2N0[1 −Me − (1 +Me)(Mζ +Mv)],

K0 =
1√
2

√
√

A2∗ +B2∗ +A∗ , L0 =
1√
2

√
√

A2∗ +B2∗ −A∗ .

If a given material with weak coupling obeys the inequality

Me + (1 +Me)(Mζ +Mv) = R0 < 1, (2.14)

the roots of Eq. (2.13) with the plus sign in can be written as

α2
k =

i(1 +Me) −N0(1 +Mζ +Mv) ± (K0 + iL0)
1 + iN0Mζ

ω

2b
, k = 1, . . . , 4, (2.15)

and the roots of Eq. (2.13) with the minus sign can be written as

α2
k =

−i(1 +Me) −N0(1 +Mζ +Mv) ± (K0 − iL0)
1 − iN0Mζ

ω

2b
, k = 5, . . . , 8. (2.16)

In the case R0 > 1, where the coupling is substantial, the roots of Eq. (2.13) with the plus sign are written as

α2
k =

i(1 +Me) −N0(1 +Mζ +Mv) ± (K0 − iL0)
1 + iN0Mζ

ω

2b
, k = 1, . . . , 4, (2.17)

and the roots of the Eq. (2.13) with the minus sign are written as

α2
k =

−i(1 +Me) −N0(1 +Mζ +Mv) ± (K0 + iL0)
1 − iN0Mζ

ω

2b
, k = 5, . . . , 8. (2.18)

Next, it is expedient to represent the roots α1, . . . , α8 as follows:

α1,2 = ±(α01 + iβ01), α3,4 = ±(α03 + iβ03), α5,6 = ᾱ1,2, α7,8 = ᾱ3,4. (2.19)

The real and imaginary parts of the roots are found from (2.15)–(2.18) using the formulas

R0 < 1: α01 = R∗
1 cosϕ1, β01 = R∗

1 sinϕ1,

ϕ1 =
1
2

arctan
B∗

1

A∗
1

, R∗
1 =

√

ω
√

A∗2
1 +B∗2

1

/

[2b(1 +N2
0M

2
ζ )] ,

A∗
1 = K0 −N0(1 +Mζ +Mv) +N0Mζ(1 +Me + L0),

B∗
1 = 1 +Me + L0 +N0Mζ[N0(1 +Mζ +Mv) −K0],

R0 < 1: α03 = R∗
3 cosϕ3, β03 = R∗

3 sinϕ3,

ϕ3 =
1
2

arctan
B∗

3

A∗
3

, R∗
3 =

√

ω
√

A∗2
3 +B∗2

3

/

[2b(1 +N2
0M

2
ζ )] ,

A∗
3 = −K0 −N0(1 +Mζ +Mv) +N0Mζ(1 +Me − L0),

B∗
3 = 1 +Me − L0 +N0Mζ[N0(1 +Mζ +Mv) −K0],

R0 > 1: α01 = R∗
1 cosϕ1, β01 = R∗

1 sinϕ1,
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ϕ1 =
1
2

arctan
B∗

1

A∗
1

, R∗
1 =

√

ω
√

A∗2
1 +B∗2

1

/

[2b(1 +N2
0M

2
ζ )] ,

A∗
1 = K0 −N0(1 +Mζ +Mv) +N0Mζ(1 +Me − L0),

B∗
1 = 1 +Me − L0 +N0Mζ[N0(1 +Mζ +Mv) −K0],

R0 > 1: α03 = R∗
3 cosϕ3, β03 = R∗

3 sinϕ3,

ϕ3 =
1
2

arctan
B∗

3

A∗
3

, R∗
3 =

√

ω
√

A∗2
3 +B∗2

3

/

[2b(1 +N2
0M

2
ζ )] ,

A∗
3 = −K0 −N0(1 +Mζ +Mv) +N0Mζ(1 +Me + L0),

B∗
3 = 1 +Me + L0 +N0Mζ[N0(1 +Mζ +Mv) −K0].

To obtain the general solution of system (2.1) in explicit form, it is necessary to refine the couplings between
the coefficients Aj and Cj (j = 1, 2) for various values of α = αm (m = 1, . . . , 8). For this purpose, we introduce
the following notation:

Aj = Aj(αm), Cj = Cj(αm) (j = 1, 2, m = 1, . . . , 8), C1(αm) = Hm.

We express the coefficients C2(αm) and Aj(αm) in terms of the quantities Hm, which will be considered complex.
Substitution of α = αm into (2.4) and (2.12) yields

C2(αm) = iC1(αm) = iHm, C2(αm+4) = −iC1(αm+4) = −iHm+4,

A1(αm) = −
(

i
bαm

ω
+

ᾱm

|αm|2
)Hm

k
, A1(αm+4) =

(

i
bαm+4

ω
− ᾱm+4

|αm+4|2
)Hm+4

k
,

A2(αm) = iA1(αm), A2(αm+4) = −iA1(αm+4) (m = 1, . . . , 4).

As a result, the general solution of system (2.1) becomes

P1(x) = −
4∑

m=1

(

i
bαm

ω
+

ᾱm

|αm|2
)Hm

k
eαmx +

8∑

m=5

(

i
bαm

ω
− ᾱm

|αm|2
)Hm

k
eαmx,

P2(x) =
4∑

m=1

(bαm

ω
− i

ᾱm

|αm|2
)Hm

k
eαmx +

8∑

m=5

(bαm

ω
+ i

ᾱm

|αm|2
)Hm

k
eαmx, (2.20)

R1(x) =
8∑

m=1

Hm eαmx, R2(x) = i

4∑

m=1

Hm eαmx −i
8∑

m=5

Hm eαmx .

For the four pairs of complex-conjugate characteristic roots (2.19), we introduce the corresponding pairs of complex-
conjugate coefficients:

Hm = (A0m − iC0m)/2, Hm+4 = H̄m = (A0m + iC0m)/2, m = 1, . . . , 4.

Here A0m and C0m (m = 1, . . . , 4) are eight unknowns, which are then found from boundary conditions (1.4) or
(1.5). In (2.10), it is shown that the sum of two terms in expressions (2.20) that correspond to the two complex-
conjugate characteristic roots αm and αm+4 (m = 1, . . . , 4), is a real function. For a more compact form of the
subsequent expressions, we introduce the auxiliary constants pj and qj and the notation of the real and imaginary
parts of the characteristic roots with even subscripts:

pj =
1
k

( β0j

R∗2
j

− bα0j

ω

)

, qj =
1
k

( α0j

R∗2
j

− bβ0j

ω

)

, j = 1, 3,

p2k = p2k−1, q2k = q2k−1, α0(2k) = α0(2k−1), β0(2k) = β0(2k−1), k = 1, 2.

(2.21)
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With the use of the property (2.10) and the notation (2.21), the general solution in (2.20) for a flat strip is
reduced to real form. If the variable x in (2.20) is replaced by the difference x − h (which proves more convenient
for making the solution to satisfy the boundary conditions), the expressions for Pj(x) and Rj(x) become

R1(x) =
4∑

k=1

[A0k cosβ0k(x− h) − (−1)kC0k sinβ0k(x− h)] e(−1)kα0k(h−x),

R2(x) =
4∑

k=1

[C0k cosβ0k(x− h) + (−1)kA0k sinβ0k(x− h)] e(−1)kα0k(h−x),

P1(x) =
4∑

k=1

{qk[(−1)kA0k cosβ0k(x− h) − C0k sinβ0k(x− h)] (2.22)

− pk[(−1)kC0k cosβ0k(x− h) +A0k sinβ0k(x− h)]} e(−1)kα0k(h−x),

P2(x) =
4∑

k=1

{pk[(−1)kA0k cosβ0k(x− h) − C0k sinβ0k(x− h)]

+ qk[(−1)kC0k cosβ0k(x− h) +A0k sinβ0k(x− h)]} e(−1)kα0k(h−x) .

The general integrals for a thermoviscoelastic strip (2.11), (2.22) contain 12 arbitrary constants A0j , C0j ,
and Dj (j = 1, . . . , 4) which are found from the conditions on the boundaries of the flat strip. The functions
obtained will be used to construct two exact solutions for a rod of triangular cross section.

3. First Exact Solution. To construct the solution, we use a special procedure based on the variables ξ
[7], which are determined as follows. We denote the radius-vectors of a certain pole and an arbitrary point in the
section of the rod Ω by r0 and r and the radius-vectors of the vertices of the equilateral triangle Ω of height 2h by
rm and introduce the auxiliary variables ξ and ξk:

ξ = (r − r0)n, ξm = (r − rm)nm, m = 1, 2, 3 (3.1)

(n is a certain unit vector, nk are the inward unit normals to the sides of the triangle Ω, whose vertices and sides
are numbered counter-clockwise). With this definition of the variables ξm, the equations of the sides of the triangle
are given by the equalities ξ1 = 0, ξ2 = 0, and ξ3 = 0. For the points (x, y) ∈ Ω, the strict inequalities ξ1 > 0,
ξ2 > 0, and ξ3 > 0 hold. The variables ξ and ξm and the normals nm on the plane (x, y) possess the following
properties, which will be used in the subsequent analysis:

n1 + n2 + n3 = 0, n1n2 = n1n3 = n2n3 = −1/2,

n1 × n2 = n2 × n3 = n3 × n1 =
√

3/2, ξ1 + ξ2 + ξ3 = 2h;
(3.2)

F = F (ξ) ∈ C2(Ω): Fx = F ′(ξ)nx, Fy = F ′(ξ)ny,

Fxx = F ′′(ξ)n2
x, Fxy = F ′′(ξ)nxny, Fyy = F ′′(ξ)n2

y .
(3.3)

Here nj × nk is the unique nonzero projection of the vector product onto the z axis. Using the functions Rj(ξ),
Pj(ξ), and Qj(ξ) obtained by formulas (2.11) and (2.22), it is possible to construct a particular solution of system
(1.7)–(1.9):

Uj(x, y) = Pj(ξ)nx −Qj(ξ)ny, Vj(x, y) = Pj(ξ)ny +Qj(ξ)nx,

Tj(x, y) = Rj(ξ), j = 1, 2.
(3.4)

The forms of the functions Uj , Vj , and Tj in (3.4) differ significantly. This is explained by the fact that
(Uj , Vj) is a vector function and Tj is a scalar function. Transformation from x to the variable ξ is equivalent to
rotation of the coordinate system. In this case, vector functions are transformed under the laws of vector algebra
and scalar functions do not change; therefore, the functions (Uj , Vj) contain projections of the normal vector nx
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and ny that take into account the rotation, and the functions Tj do not contain these projections in similar form.
Below, the following properties will be used.

Property 1. If the functions Pj(x), Qj(x), and Rj(x) used in expressions (3.4) are solutions of systems
(2.1) and (2.2), i.e., if they have the form (2.11) and (2.22), then Uj , Vj , and Tj from (3.4) satisfy all differential
equations of system (1.7)–(1.9).

Property 2. In (3.4), the functions Qj(ξ) as particular solutions of Eqs. (2.2) can be chosen independently
of the particular solutions Pj(ξ) and Rj(ξ).

To prove Properties 1 and 2, we substitute Uj , Vj , and Tj from (3.4) into the first equations of (1.7) and
(1.9); for the remaining equations, similar manipulations can be performed. Using the expressions for the particular
derivatives from (3.3), we obtain

λ0(P ′′
1 n

3
x −Q′′

1n
2
xny) + (λ+ μ)(P ′′

1 nxn
2
y +Q′′

1n
2
xny) + μ(P ′′

1 nxn
2
y −Q′′

1n
3
y)

+ ωζ0(P ′′
2 n

3
x −Q′′

2n
2
xny) + ω(ζ + η)(P ′′

2 nxn
2
y +Q′′

2n
2
xny)

+ ωη(P ′′
2 nxn

2
y −Q′′

2n
3
y) − γeR

′
1nx − ωγvR

′
2nx + ρω2(P1nx −Q1ny) = 0, (3.5)

bR′′
1 − kω(P ′

2n
2
x −Q′

2nxny) − kω(P ′
2n

2
y +Q′

2nxny) − ωR2 = 0.

After simplifications, the last equation in (3.5) coincides with the third equation in (2.1.) In the first equation of
(3.5), we group all terms ahead of Pj and Qj:

P ′′
1 nx(λ0n

2
x + (λ+ μ)n2

y + μn2
y) + ωP ′′

2 nx(ζ0n2
x + (ζ + η)n2

y + ηn2
y)

+ ρω2nxP1 −Q′′
1 ny(λ0n

2
x − (λ + μ)n2

x + μn2
y) − γeR

′
1nx − ωγvR

′
2nx

− ωQ′′
2ny(ζ0n2

x − (ζ + η)n2
x + ηn2

y) − ρω2nyQ1 = 0. (3.6)

The coefficients at P ′′
j and Q′′

j are transformed by the formulas

λ0n
2
x + (λ+ μ)n2

y + μn2
y = λ0n

2
x + λ0n

2
y = λ0,

λ0n
2
x − (λ+ μ)n2

x + μn2
y = μn2

x + μn2
y = μ.

(3.7)

With the use of (3.7), Eq. (3.6) is reduced to the form

nx(λ0P
′′
1 + ωζ0P

′′
2 − γeR

′
1 − ωγvR

′
2 + ρω2P1) − ny(μQ′′

1 + ωηQ′′
2 + ρω2Q1) = 0. (3.8)

Since Pj , Qj , and Rj satisfy Eqs. (2.1) and (2.2) by construction, the expressions in parentheses in (3.8) vanish.
Thus, Properties 1 and 2 are proved. If on the right sides of expressions (3.4), the variable ξ is replaced by any of
the variables ξm determined in (3.1) the expressions obtained for Uj , Vj , and Tj satisfy system (1.7)–(1.9).

In writing the exact solution, we introduce the functions

P
(a)
j (ξ) = Pj(ξ) − Pj(2h− ξ), R

(s)
j (ξ) = Rj(ξ) +Rj(2h− ξ), j = 1, 2.

The functions P (s)
j (ξ), R(a)

j (ξ), Q(s)
j (ξ), and Q(a)

j (ξ) are introduced similarly. The superscript (s) [or (a)] indicates
that the function is symmetric (or antisymmetric) about the point ξ = h; therefore, for these functions and their
derivatives, the following equalities are satisfied:

P
(a)
j (ξ) + P

(a)
j (2h− ξ) = 0, R

(s)
j (ξ) −R

(s)
j (2h− ξ) = 0, j = 1, 2,

P
(a)′
j (ξ) − P

(a)′
j (2h− ξ) = 0, R

(s)′
j (ξ) +R

(s)′
j (2h− ξ) = 0.

(3.9)

If the functions Pj(ξ) and Rj(ξ) jointly contain eight constants, the functions P (s)
j (ξ) and R(a)

j (ξ) contain only four

constants and the functions Q(a)
j (ξ) contain two constants; we denote these constants by F1, . . . , F4 and G1 and G2:

F1 = 2(A01 +A02), F2 = 2(C01 + C02), F3 = 2(A03 +A04), F4 = 2(C03 + C04),

G1 = 2(D1 +D3), G2 = 2(D2 −D4).
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Below, a particular form of the functions P (a)
j (ξ), Q(s)

j (ξ), and R(s)
j (ξ) will be required. To obtain a compact

form of these functions, we introduce the notation

coSh0j(ξ) = cosβ0j(ξ − h) sinh α0j(ξ − h), siCh0j(ξ) = sinβ0j(ξ − h) cosh α0j(ξ − h),

coCh0j(ξ) = cosβ0j(ξ − h) cosh α0j(ξ − h), siSh0j(ξ) = sinβ0j(ξ − h) sinh α0j(ξ − h).

In these notation, the functions P (a)
j (ξ), Q(s)

j (ξ), and R(s)
j (ξ) are written as

P
(a)
1 (ξ) =

2∑

k=1

{p2k−1[F2k coSh0(2k−1)(ξ) − F2k−1 siCh0(2k−1)(ξ)]

− q2k−1[F2k−1 coSh0(2k−1)(ξ) + F2k siCh0(2k−1)(ξ)]},

P
(a)
2 (ξ) = −

2∑

k=1

{p2k−1[F2k−1 coSh0(2k−1)(ξ) + F2k siCh0(2k−1)(ξ)]

+ q2k−1[F2k−1 siCh0(2k−1)(ξ) − F2k coSh0(2k−1)(ξ)]};

Q
(s)
1 (ξ) = G1 coCh00(ξ) +G2 siSh00(ξ), Q

(s)
2 (ξ) = G2 coCh00(ξ) −G1 siSh00(ξ); (3.10)

R
(s)
1 (ξ) = F1 coCh01(ξ) + F2 siSh01(ξ) + F3 coCh03(ξ) + F4 siSh03(ξ),

R
(s)
2 (ξ) = F2 coCh01(ξ) − F1 siSh01(ξ) + F4 coCh03(ξ) − F3 siSh03(ξ).

The solution of problem (1.7)–(1.9) with boundary conditions (1.4) is represented as the sums

Uj(x, y) =
3∑

k=1

[P (a)
j (ξk)nkx −Q

(s)
j (ξk)nky ], Tj(x, y) =

3∑

k=1

R
(s)
j (ξk),

Vj(x, y) =
3∑

k=1

[P (a)
j (ξk)nky +Q

(s)
j (ξk)nkx], j = 1, 2.

(3.11)

By virtue of Properties 1 and 2, the functions Uj , Vj , and Tj in (3.11) satisfy Eqs. (1.7)–(1.9). It remains to satisfy
boundary conditions (1.4), which previously need to be transformed. For this, we write the normal displacement
component un|Γ = (unx + vny)|Γ on the boundary Γ in the form

(Ujnx + Vjny)
∣
∣
∣
Γ

= uj0, j = 1, 2. (3.12)

In these problems, it is assumed that all analytical relations similar to (3.11) are equally valid for the sides of
the equilateral triangle; therefore, it is sufficient that all boundary conditions are satisfied on one side, for example,
on the side ξ3 = 0. Then, on the other two sides of the triangle for ξ1 = 0 or ξ2 = 0, the boundary conditions are
satisfied automatically. For the points (x, y) on the side of the triangle ξ3 = 0 between the variables ξ1 and ξ2, we
have

ξ3 = 0: ξ1 + ξ2 = 2h. (3.13)

Substituting Uj and Vj from (3.11) into (3.12) for ξ3 = 0 and using (3.13), we obtain the following two equations:

[P (a)
j (ξ1)(n1n3) + P

(a)
j (2h− ξ1)(n2n3)] + P

(a)
j (0)

+ [Q(s)
j (ξ1)n1 × n3 +Q

(s)
j (2h− ξ1)n2 × n3] = uj0 (j = 1, 2).

Using properties (3.2) and (3.9), it is easy show that all terms containing the variable ξ1 in square brackets are
mutually cancelled; therefore,

P
(a)
j (0) = uj0 (j = 1, 2). (3.14)
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We consider the boundary condition in (1.4) for the heat flux on the side ξ3 = 0. After substitution of
Tj(x, y) from (3.11), this condition becomes

[R(s)′
j (ξ1)(n1n3) +R

(s)′
j (2h− ξ1)(n2n3)] +R

(s)′
j (0) = qj0, j = 1, 2. (3.15)

Using (3.2) and (3.9), one can prove that the expression in square brackets in (3.15) vanishes and, hence,

R
(s)′
j (0) = qj0, j = 1, 2. (3.16)

The system of four equations (3.14), (3.16) for the coefficients F1, . . . , F4 is represented in explicit form
2∑

k=1

{p2k−1[F2k−1 siCh0(2k−1)(h) − F2k coSh0(2k−1)(h)]

+ q2k−1[F2k−1 coSh0(2k−1)(h) + F2k siCh0(2k−1)(h)]} = u10,

2∑

k=1

{p2k−1[F2k−1 coSh0(2k−1)(h) + F2k siCh0(2k−1)(h)]

+ q2k−1[F2k coSh0(2k−1)(h) − F2k−1 siCh0(2k−1)(h)]} = u20,

2∑

k=1

{F2k−1[β0(2k−1) siCh0(2k−1)(h) − α0(2k−1) coSh0(2k−1)(h)]
(3.17)

− F2k[β0(2k−1) coSh0(2k−1)(h) + α0(2k−1) siCh0(2k−1)(h)]} = q10,

2∑

k=1

{F2k−1[β0(2k−1) coSh0(2k−1)(h) + α0(2k−1) siCh0(2k−1)(h)]

+ F2k[β0(2k−1) siCh0(2k−1)(h) − α0(2k−1) coSh0(2k−1)(h)]} = q20.

The linear system (3.17) is easily solved on a computer. It remains to elucidate whether there are cases
where the above equations have no solution. We show that the determinant of the system is always Δ∗

1 > 0. Using
the properties of Eqs. (3.17), instead of F ∗

1 , . . . , F
∗
4 we introduce the new unknown complexes x1, . . . , x4:

x1 = F1 siCh01(h) − F2 coSh01(h), x2 = F1 coSh01(h) + F2 siCh01(h),

x3 = F3 siCh03(h) − F4 coSh03(h), x4 = F3 coSh03(h) + F4 siCh03(h).
(3.18)

In the notation (3.18), system (3.17) becomes simpler:

β01x1 − α01x2 + β03x3 − α03x4 = q10, α01x1 + β01x2 + α03x3 + β03x4 = q20,

p1x1 + q1x2 + p3x3 + q3x4 = u10, −q1x1 + p1x2 − q3x3 + p3x4 = u20.
(3.19)

The determinant of Eqs. (3.19) can be written in convenient form. After some transformations, Δ∗
1 is expressed as

Δ∗
1 = [(coSh01(h))2 + (siCh01(h))2][(coSh03(h))2 + (siCh03(h))2]

× [(P ∗
1R

∗
3)

2 + (P ∗
3R

∗
1)

2 − 2(P ∗
1 P

∗
3R

∗
1R

∗
3) cos (ψ1 − ψ3 + ϕ3 − ϕ1)] > 0, (3.20)

P ∗
j =

√

p2
j + q2j , ψj = arctan (qj/pj), j = 1, 3.

From the closed system (3.17), we obtain the constants F1, . . . , F4, whose explicit expressions are cumbersome and
are not given here.

In accordance with (1.1), the boundary condition for the tangential stress in (1.4) can be written as

τn

∣
∣
∣
Γ

= 2μγn

∣
∣
∣
Γ

+ 2η
∂

∂t
γn

∣
∣
∣
Γ

= τ10 cosωt+ τ20 sinωt. (3.21)
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If the normal direction on the boundary Γ is defined by the unit vector n = (nx, ny), then the tangential direction
on Γ for the plane problem is defined by the unit vector τ = (−ny, nx). Then, the tangential component of the
displacement vector on Γ is expressed as

uτ

∣
∣
∣
Γ

= (−uny + vnx)
∣
∣
∣
Γ
.

Since in boundary conditions (1.4) on Γ, the normal component un is specified to be constant at the points of the
boundary, the expressions for the shear γn and the shear rate ∂γn/∂t can be simplified:

2γn

∣
∣
∣
Γ

=
∂uτ

∂n

∣
∣
∣
Γ

=
( ∂v

∂n
nx − ∂u

∂n
ny

)∣
∣
∣
Γ
, 2

∂

∂t
γn

∣
∣
∣
Γ

=
∂

∂t

( ∂v

∂n
nx − ∂u

∂n
ny

)∣
∣
∣
Γ
.

As a result, boundary conditions (3.21) on the triangle side ξ3 = 0 have the form

μ
∂

∂n3
(V1n3x − U1n3y)

∣
∣
∣
ξ3=0

+ ηω
∂

∂n3
(V2n3x − U2n3y)

∣
∣
∣
ξ3=0

= τ10,

μ
∂

∂n3
(V2n3x − U2n3y)

∣
∣
∣
ξ3=0

− ηω
∂

∂n3
(V1n3x − U1n3y)

∣
∣
∣
ξ3=0

= τ20.

(3.22)

Equation (3.22) implies

∂

∂n3
(Vjn3x − Ujn3y)

∣
∣
∣
ξ3=0

= τ∗j , τ∗j =
μτj0 + (−1)jηωτ(3−j)0

μ2 + η2ω2
(j = 1, 2). (3.23)

Substitution of Uj and Vj from (3.11) into the left part of boundary conditions (3.23) yields two equations

∂

∂n3
[−P (a)

j (ξ1)n1 × n3 − P
(a)
j (ξ2)n2 × n3

+Q
(s)
j (ξ1)n1n3 +Q

(s)
j (ξ2)n2n3 +Q

(s)
j (ξ3)]

∣
∣
∣
ξ3=0

= τ∗j (j = 1, 2). (3.24)

Equation (3.24) can be simplified using the following property for the derivatives:

∂

∂n3
F (ξj) = F ′(ξj)njn3 = −1

2
F ′(ξj) (j = 1, 2),

∂

∂n3
F (ξ3) = F ′(ξ3). (3.25)

By virtue of (3.25) and properties (3.2), boundary conditions (3.24) become

(
√

3/4)[P (a)′
j (2h− ξ1) − P

(a)′
j (ξ1)]

+ (1/4)[Q(s)′
j (ξ1) +Q

(s)′
j (2h− ξ1)] +Q

(s)′
j (0) = τ∗j (j = 1, 2). (3.26)

By virtue of properties (3.9) and (3.26), the expressions in square brackets vanish, and, hence,

Q
(s)′
j (0) = τ∗j (j = 1, 2).

From this, we find the coefficients G1 and G2:

G1 = [τ∗1 (β00 siCh00(h) − α00 coSh00(h)) + τ∗2 (α00 siCh00(h) + β00 coSh00(h))]/Δq1,

G2 = [τ∗2 (β00 siCh00(h) − α00 coSh00(h)) − τ∗1 (α00 siCh00(h) + β00 coSh00(h))]/Δq1.
(3.27)

The determinant Δq1 is expressed as

Δq1 = (α2
00 + β2

00)[cosh (α002h) − cos (β002h)]/2 > 0. (3.28)

From inequality (3.28), it follows that solution (3.27) is unique. All expressions of the first exact solution
of problem (1.2)–(1.4) for a viscoelastic rod of triangular cross section are cumbersome; therefore, we will not
give its final form and only indicate the sequence of calculations that lead to this solution: the displacements u
and v and the temperature T are determined from (1.6), the amplitudes Uj, Vj , and Tj from (3.11), P (a)

j , R(s)
j ,

and Q
(s)
j from (3.10), the coefficients F1, . . . , F4 from the algebraic system (3.17), G1and G2 from (3.20), and the

determinants Δ∗
1 and Δq1 from (3.20) and (3.28). In numerical implementation of the solution, all manipulations

should be performed in the reverse order: the determinants Δ∗
1 and Δq1 are first calculated from (3.20) and (3.28),
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the coefficients F1, . . . , F4 are then found from (3.17), G1 and G2 from (3.27), etc. The displacements u and v and
the temperature T are expressed in terms of continuous and differentiable functions; therefore, the temperature,
strains and strain rates can be found from the well-known formulas of the linear theory of thermoviscoelasticity and
the stress is found from (1.1).

4. Second Exact Solution. The solution of problem (1.7)–(1.9) with boundary conditions (1.5) can be
represented as the sums

Uj(x, y) =
3∑

k=1

[P (s)
j (ξk)nkx −Q

(a)
j (ξk)nky], Tj(x, y) =

3∑

k=1

R
(a)
j (ξk),

Vj(x, y) =
3∑

k=1

[P (s)
j (ξk)nky +Q

(a)
j (ξk)nkx], j = 1, 2,

(4.1)

where

P
(s)
1 (ξ) =

2∑

k=1

{p2k−1[F ∗
2k coCh0(2k−1)(ξ) − F ∗

2k−1 siSh0(2k−1)(ξ)]

− q2k−1[F ∗
2k−1 coCh0(2k−1)(ξ) + F ∗

2k siSh0(2k−1)(ξ)]},

P
(s)
2 (ξ) =

2∑

k=1

{q2k−1[F ∗
2k−1 siSh0(2k−1)(ξ) − F ∗

2k coCh0(2k−1)(ξ)]

− p2k−1[F ∗
2k−1 coCh0(2k−1)(ξ) + F ∗

2k siSh0(2k−1)(ξ)]},

Q
(a)
1 (ξ) = G∗

1 coSh00(ξ) +G∗
2 siCh00(ξ), Q

(a)
2 (ξ) = G∗

2 coSh00(ξ) −G∗
1 siCh00(ξ),

R
(a)
1 (ξ) = F ∗

1 coSh01(ξ) + F ∗
2 siCh01(ξ) + F ∗

3 coSh03(ξ) + F ∗
4 siCh03(ξ),

R
(a)
2 (ξ) = F ∗

2 coSh01(ξ) − F ∗
1 siCh01(ξ) + F ∗

4 coSh03(ξ) − F ∗
3 siCh03(ξ),

F ∗
1 = 2(A01 −A02), F ∗

2 = 2(C01 − C02), F ∗
3 = 2(A03 −A04),

F ∗
4 = 2(C03 − C04), G∗

1 = 2(D1 −D3), G∗
2 = 2(D2 +D4).

In the construction of the second exact solution with the boundary conditions having the form (1.5), the
condition for the tangential component of the displacement vector uτ

∣
∣
∣
Γ

= (vnx − uny)
∣
∣
∣
Γ

implies

(Vjnx − Ujny)
∣
∣
∣
Γ

= vj0, j = 1, 2. (4.2)

Substitution of (4.1) into (4.2) for ξ3 = 0 yields the expression

−[P (s)
j (ξ1)(n1 × n3) + P

(s)
j (2h− ξ1)(n2 × n3)]

+ [Q(a)
j (ξ1)(n1n3) +Q

(a)
j (2h− ξ1)(n2n3)] +Q

(a)
j (0) = vj0 (j = 1, 2). (4.3)

Using the properties (3.2) and (3.9), one can show that the expressions in square brackets containing the variable
ξ1 vanish; therefore, Eq. (4.3) implies

Q
(a)
j (0) = vj0 (j = 1, 2). (4.4)

Let us write two equations (4.4) for G∗
1 and G∗

2:

G∗
1 cos(β00h) sinh (α00h) +G∗

2 sin(β00h) cosh (α00h) = −v10,

−G∗
1 sin(β00h) cosh (α00h) +G∗

2 cos(β00h) sinh (α00h) = −v20.
The determinant of these equations Δq2 > 0; therefore, this system has the solution

G∗
1 = [v20 sin(β00h) cosh (α00h) − v10 cos (β00h) sinh (α00h)]/Δq2,
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G∗
2 = −[v10 sin(β00h) cosh (α00h) + v20 cos (β00h) sinh (α00h)]/Δq2,

Δq2 = cosh (2α00h) − cos (2β00h) > 0.

To satisfy the second boundary condition in (1.5), we transform the expression for the normal stress. Since
on the boundary Γ, the tangential component uτ is constant, the stress σn

∣
∣
∣
Γ

can be represented as

σn

∣
∣
∣
Γ

= λ0
∂un

∂n

∣
∣
∣
Γ

+ ζ0
∂

∂n

∂un

∂t

∣
∣
∣
Γ

= σ10 cosωt+ σ20 sinωt. (4.5)

Substitution of un

∣
∣
∣
Γ

from expression (3.12) into (4.5) yields

λ0
∂

∂n3
(U1n3x + V1n3y)

∣
∣
∣
ξ3=0

+ ζ0ω
∂

∂n3
(U2n3x + V2n3y)

∣
∣
∣
ξ3=0

= σ10,

λ0
∂

∂n3
(U2n3x + V2n3y)

∣
∣
∣
ξ3=0

− ζ0ω
∂

∂n3
(U1n3x + V1n3y)

∣
∣
∣
ξ3=0

= σ20.

(4.6)

Equation (4.6) implies

∂

∂n3
(Ujn3x + Vjn3y)

∣
∣
∣
ξ3=0

= Nj, Nj =
λ0σj0 + (−1)jζ0ωσ(3−j) 0

λ2
0 + ζ2

0ω
2

(j = 1, 2). (4.7)

Substitution of Uj and Vj from (4.1) into the left side of boundary conditions (4.7) yields two equations

∂

∂n3
[P (s)

j (ξ1)n1n3 + P
(s)
j (ξ2)n2n3 + P

(s)
j (ξ3)

+Q
(a)
j (ξ1)n1 × n3 +Q

(a)
j (ξ2)n2 × n3]

∣
∣
∣
ξ3=0

= Nj (j = 1, 2). (4.8)

In view of the properties (3.2) and (3.23), boundary conditions (4.8) become

(1/4)[P (s)′
j (ξ1) + P

(s)′
j (h− ξ1)]

+ (
√

3/4)[Q(a)′
j (h− ξ1) −Q

(a)′
j (ξ1)] + P

(s)′
j (0) = Nj (j = 1, 2). (4.9)

From (3.9) it follows that expressions in square brackets vanish; therefore, from (4.9) we obtain two equations

P
(s)′
j (0) = Nj (j = 1, 2). (4.10)

It remains to satisfy the boundary condition in (1.5) for the temperature on the triangle side ξ3 = 0. After
substitution of Tj(x, y) from (4.1), this condition becomes

[R(a)
j (ξ1) +R

(a)
j (2h− ξ1)] +R

(a)
j (0) = Tj0, j = 1, 2. (4.11)

Using (3.9), it is easy to show that the expression in square brackets vanish. Then, from (4.11) we obtain

R
(a)
j (0) = Tj0, j = 1, 2. (4.12)

The system of four equations (4.10), (4.12) for the coefficients F ∗
1 , . . . , F

∗
4 is written in explicit form

2∑

k=1

{q2k−1F
∗
2k−1[α0(2k−1) coSh0(2k−1)(h) − β0(2k−1) siCh0(2k−1)(h)]

+ q2k−1F
∗
2k[α0(2k−1) siCh0(2k−1)(h) + β0(2k−1) coSh0(2k−1)(h)]

+ p2k−1F
∗
2k[β0(2k−1) siCh0(2k−1)(h) − α0(2k−1) coSh0(2k−1)(h)]

+ p2k−1F
∗
2k−1[α0(2k−1) siCh0(2k−1)(h) + β0(2k−1) coSh0(2k−1)(h)]} = N1,

2∑

k=1

{q2k−1F
∗
2k[α0(2k−1) coSh0(2k−1)(h) − β0(2k−1) siCh0(2k−1)(h)]
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− q2k−1F
∗
2k−1[α0(2k−1) siCh0(2k−1)(h) + β0(2k−1) coSh0(2k−1)(h)] (4.13)

+ p2k−1F
∗
2k−1[α0(2k−1) coSh0(2k−1)(h) − β0(2k−1) siCh0(2k−1)(h)]

+ p2k−1F
∗
2k[α0(2k−1) siCh0(2k−1)(h) + β0(2k−1) coSh0(2k−1)(h)]} = N2,

2∑

k=1

[F ∗
2k−1 coSh0(2k−1)(h) + F ∗

2k siCh0(2k−1)(h)] = −T10,

2∑

k=1

[F ∗
2k coSh0(2k−1)(h) − F ∗

2k−1 siCh0(2k−1)(h)] = −T20.

The linear system of four equations (4.13) is easily solved on a computer. It remains to elucidate whether
there are cases where these equations have no solution. We prove that the determinant of the system is always
Δ∗

2 > 0. To write the determinant in convenient form, we use the properties of Eqs. (4.13) and replace the coefficients
F ∗

1 , . . . , F
∗
4 by new unknown complexes x∗1, . . . , x

∗
4:

x∗1 = F ∗
1 siCh01(h) − F ∗

2 coSh01(h), x∗2 = F ∗
1 coSh01(h) + F ∗

2 siCh01(h),

x∗3 = F ∗
3 siCh03(h) − F ∗

4 coSh03(h), x∗4 = F ∗
3 coSh03(h) + F ∗

4 siCh03(h).
(4.14)

In notation (4.14), system (4.13) is simplified:

(p1α01 − q1β01)x1 + (p1β01 + q1α01)x2 + (p3α03 − q3β03)x3 + (p3β03 + q3α03)x4 = N1,

(p1α01 − q1β01)x2 − (p1β01 + q1α01)x1 − (p3β03 + q3α03)x3 + (p3α03 − q3β03)x4 = N2, (4.15)

−x1 − x3 = −T20, x2 + x4 = −T10.

The determinant of Eqs. (4.15) can be written in compact form. After some transformations for Δ∗
2, we obtain the

expression

Δ∗
2 = [(coSh01(h))2 + (siCh01(h))2][(coSh03(h))2 + (siCh03(h))2]

× [(q1β01 − p1α01 − q3β03 + p3α03)2 + (p1β01 + q1α01 − p3β03 − q3α03)2] > 0.

From the closed system of equations (4.13), we find the constants F ∗
1 , . . . , F

∗
4 , whose explicit expressions are cum-

bersome and are not given here.
In a thermoviscoelastic rod, the propagation of one temperature and two elastic waves (shear and longitu-

dinal) is possible. The characteristics of these waves are determined by the real and imaginary parts of the roots
αj and βj (j = 1, . . . , 4). To establish which roots correspond to the waves listed above, we set the coupling and
viscosity coefficients in Eq. (2.13) equal to zero (k = ζ0 = 0), i.e., Me = Mv = Mζ = 0. Then, from (2.14) we obtain

α1,2 = ±
√
ω

2b
(1 + i), α3,4 = ±

√

N0
ω

b
= ±ω

√
ρ

λ0
.

From this it follows that the roots α1,2 define the parameters of the temperature wave and the roots α3,4 define the
parameters of the longitudinal elastic wave. Because the model is coupled, both the temperature and elastic strains
change in the temperature wave, and the temperature also changes in the longitudinal elastic wave. Only the shear
wave does not influence the temperature field. Generally, the velocities of the temperature (vT ), shear (vμ), and
longitudinal (vλ) elastic waves can be calculated by the formulas

vT = ω/β01, vμ = ω/β00, vλ = ω/β03. (4.16)

The lengths of these waves are determined from the expressions

LT = 2π/β01, Lμ = 2π/β00, Lλ = 2π/β03. (4.17)

Formulas (4.16) and (4.17) and experimental data can be used to calculate the rheological characteristics of
thermoviscoelastic materials. For example, the viscosity coefficients of many solids have not yet been determined.
From the formulas for the characteristic roots, it follows that the temperature and strain fields are significantly
affected by the dimensionless parameter R0. In addition, a decrease in the coupling coefficient k leads to a decrease
in the parameters Me, Mv, and R0. Thus, if the parameter R0 is small, the coupling in the formulation of the
problem can be ignored and if R0 ∼ 1 or R0 > 1, the coupling should be considered. Account of the coupling also
depends on the required calculation accuracy in the solution of the problem.

589



REFERENCES

1. V. A. Babeshko and V. V. Kalinchuk, “Method of fictitious absorption in coupled mixed problems of elasticity
theory and mathematical physics for layered nonuniform half-space,” Prikl. Mat. Mekh., 66, No. 2, 285–292
(2002).

2. V. A. Lomazov and Yu. V. Nemirovskii, “Allowance for temperature sensitivity in the problem of diagnostics of
thermoelastic media,” J. Appl. Mech. Tech. Phys., 44, No. 1. 146–153 (2003).

3. G. Ya. Popov, “Exact solutions of some mixed problems of coupled thermoelasticity for a finite circular hollow
cylinder with a cut along the generatrix,” Prikl. Mat. Mekh., 66, No. 4, 694–704 (2002).

4. A. D. Chernyshov, “Two-dimensional dynamic boundary-value problems for curvilinear thermoviscoelastic bod-
ies,” J. Appl. Mech. Tech. Phys., 46, No. 2, 281–290 (2005).

5. M. Reiner, “Rheology,” in: Handbuch der Phizik, No. VI: Elastizität und Plastizität, Springer-Verlag, Berlin
(1958).

6. V. D. Kupradze, Three-Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity [in
Russian], Nauka, Moscow (1976).

7. A. D. Chernyshov, “Solution of the plane axisymmetric and spatial single-phase Stefan problem,” Inzh. Fiz. Zh.,
27, No. 2, 341–350 (1974).

590



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU <>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
    /RUS ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


